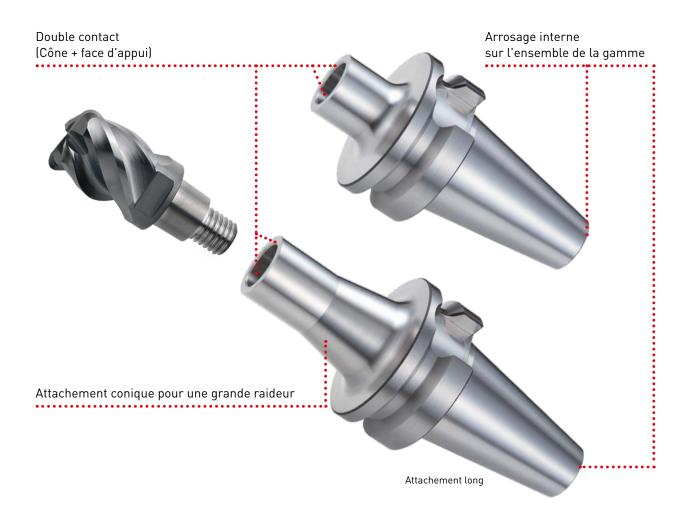
iMX


FRAISES À EMBOUT INTERCHANGEABLE

AMITSUBISHI MATERIALS

ATTACHEMENT MONOBLOC - BT30

Extension de gamme d'attachements iMX. Grande raideur d'outil pour une forte productivité.

CÔNES ER

EMBOUTS MONOBLOC INTERCHANGEABLES

Le changement d'outil facile et rapide est idéal pour les machine multi-tourelles ou à outils motorisés.

La grande raideur d'attachement assure d'excellentes performances d'usinage.

Double contact (Cône + face d'appui)

iMX

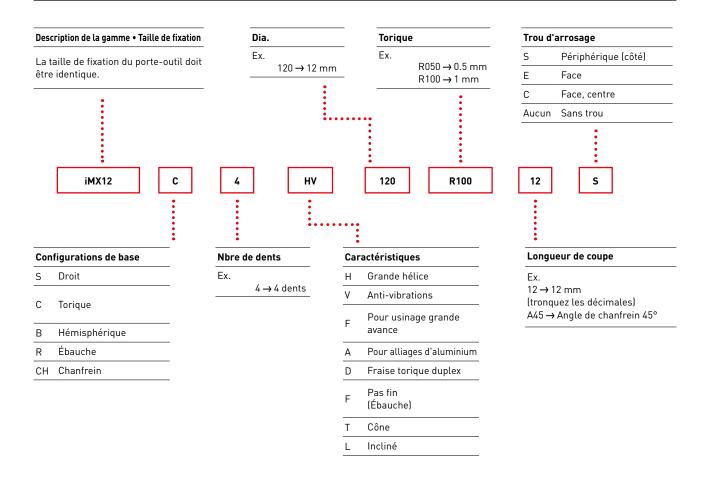
EMBOUT

Produit Référence	Forme		ZEFP	Plage de Ø		Grande Long. de Coupe	Р	Н	М	S	N	<u>(ii)</u>
DROITES RIS	БСН											
iMX-S3HV	Embout droit, 3 dents, hélices variables		3	Ø 10 – Ø 25			0		0	0	0	8
	Embout droit, 4 dents, hélices variables		,	Ø 10 – Ø 32			0		0	0	0	40
iMX-S4HV	Embout droit, 4 dents, hélices variables, arête longue		- 4	Ø 16, Ø 20		✓	0		0	0	0	12
iMX-S4HV-S	Embout droit, 4 dents, hélices variables, avec trou d'arrosage	4530 ==	4	Ø 10 – Ø 25	√		0		0	0	0	13
iMX-S3A	Embout droit, 3 dents, pour alliage d'aluminium		3	Ø 10 – Ø 28							0	19
iMX-R4F	Embout profil d'ébauche, 4 dents	(20h)	4	Ø 10 – Ø 25			0		0	0	0	22
TORIQUES												
iMX-C4HV	Embout torique, 4 dents, hélices variables		- /	Ø 10 – Ø 28			0		0	0	0	25
IMX-C4HV	Embout torique, 4 dents à hélices variables, arête longue		4	Ø 16, Ø 20		✓	0		0	0	0	
iMX-C4HV-S	Embout torique, 4 dents à hélices variables, avec trou d'arrosage		4	Ø 10 – Ø 25	√		0		0	0	0	28
iMX-C6HV-C	Embout torique, 6 dents à hélices variables, avec trou d'arrosage		6	Ø 10 – Ø 25	√		0		0	0		35
iMX-C6HV			6	Ø 10, Ø 12			0		0	0		
iMX-C10HV	Embout torique, à dents multiples, hélices variables		10	Ø 16			0		0	0		37
iMX-C12HV			12	Ø 20, Ø 25			0		0	0		
iMX-C4FD-C	Embout torique duplex, avec trou d'arrosage, 4 dents, pour grande avance		4	Ø 10 – Ø 25	√		0	0	0	0	0	39
iMX-C4FV	Embout torique pour usinage grande avance, 4 dents, hélices variables		4	Ø 10 – Ø 25			0	0				41
iMX-C3A	Embout torique, 3 dents, Pour alliage d'aluminium		3	Ø 10 – Ø 28							0	43
iMX-C8T			8	Ø 8	✓				0	0		
iMX-C10T	Embout torique & conique,		10	Ø 10	✓				0	0		.,
iMX-C12T	multi-dents, avec trou d'arrosage		12	Ø 15, Ø 19	✓				0	0		46
iMX-C15T			15	Ø 15, Ø 19	✓				0	0		

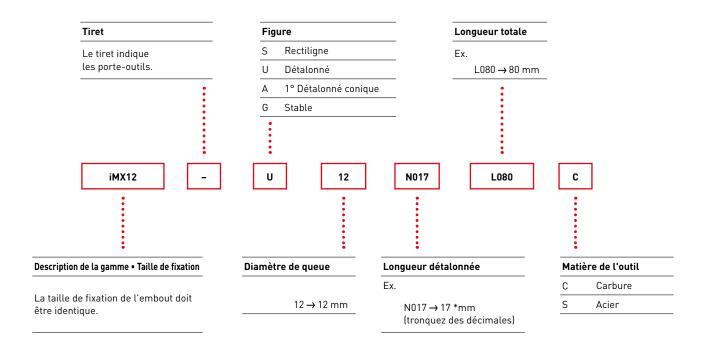
3

	Produit Référence	Forme	ZEFP	F	Plage de Ø		Grande Long. de Coupe	Р	Н	М	S	N	<u>(1)</u>
	TORIQUES												
NEW	iMX-C8T-E		8		Ø 8	✓				0	0		
NEW	iMX-C10T-E	Embout torique & conique,	10		Ø 10	✓				0	0		48
NEW	iMX-C12T-E	multi-dents, avec trou d'arrosage	12		Ø 15, Ø 19	✓				0	0		40
NEW	iMX-C15T-E		15		Ø 15, Ø 19	✓				0	0		
	iMX-RC4F-C	Embout à profil d'ébauche, trou d'arrosage central, 4 dents	4	Q	ð 10 – Ø 20	✓		0		0	0		50
	HÉMISPHÉR	IQUES											
	iMX-B4HV	Embout hémisphérique, 4 dents, hélices variables	4	Q	ð 10 – Ø 25			0		0	0	0	52
	iMX-B4HV-E	Embout hémisphérique, 4 dents, hélices variables, avec trou d'arrosage	4	Q	ð 10 – Ø 25	✓		0		0	0	0	53
	iMX-B6HV	Embout hémisphérique, 6 dents, hélices variables	6	Q	ð 10 – Ø 25			0		0	0	0	55
	iMX-B2S/	Fraise hémisphérique, 2 dents, pour l'acier trempé	2	Q	ð 16 – Ø 20								
	iMX-B4S	Fraise hémisphérique, 4 dents, pour l'acier trempé	4	Q	ð 16 – Ø 20				0				57
	iMX-B3FV	Fraise hémisphérique, pour l'usinage à débit élevé, 3 dents, hélice variable	3	Q	ð 10 – Ø 20			0	0				61
	iMX-B4WH-S	Embout sphérique, trous d'arrosage, 4 dents	4	Q	ð 12 – Ø 20	√		0		0	0	0	61
	CHANFREIN												
	iMX-CH3L	Embout à chanfreiner, 3 dents	3	Q	ð 10 – Ø 20			0	0	0	0		64
	iMX-CH6V	Embout à chanfreiner, 6 dents	6	Q	ð 12 – Ø 20			0	0	0	0		66

PORTE-OUTIL


NEW

Les porte-outils de type détalonné cylindrique sont disponibles en longueur moyenne, semi-longue ou longue.


Туре	Longueur	Angle du cône	Matière du P.O.	<u>(1)</u>
Détalonné	Moyenne Semi-longue Longue	— X	Carbure	68
Cylindrique	Moyenne	Α	Acier	69
Droit /Cylindrique -	Semi-longue Longue	— x	Carbure	68
	Moyenne	Α	Acier	69
Détalonné Conique	Longue	1°	Carbure	68
Droit /Cylindrique	Moyenne		Acier	70
Détalonné Conique	Moyenne		Acier	70
Cônes ER	Courte		Acier	71

IMX - IDENTIFICATION

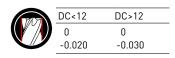
EMBOUT

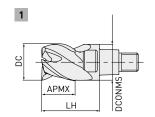
PORTE-OUTIL

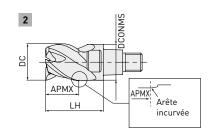
CONDITIONS DE COUPE RECOMMANDÉES

POUR TOUTES LES CONDITIONS DE COUPE SUIVRE LE TABLEAU CI-DESSOUS

Matière	L/D	Vc	n	fz	ae
	2	100 %	100 %	100 %	100 %
Acier carbone,	3	100 %	100 %	100 %	100 %
acier allié,	4	80 %	80 %	90 %	70 %
acier dou acier pré-traité	5	60 %	60 %	80 %	40 %
alliage acier outil	6	50 %	50 %	70 %	30 %
	7	40 %	40 %	70 %	20 %
Colore alliana da colore	8	40 %	40 %	60 %	10 %
Cuivre, alliages de cuivre –	9	30 %	30 %	60 %	10 %
	2	100 %	100 %	100 %	100 %
Acier inoxydable type PH, alliage de chrome cobalt, —	3	100 %	100 %	100 %	100 %
alliage de chrome cobalt, – Acier inoxydable,	4	80 %	80 %	90 %	70 %
austénitique et ferritique,	5	60 %	60 %	80 %	40 %
précipitation d'acier trempé inoxydable	6	50 %	50 %	70 %	30 %
•	7	30 %	30 %	60 %	20 %
Alliages réfractaires,	8	30 %	30 %	50 %	10 %
alliage de titane	9	20 %	20 %	50 %	10 %






EMBOUT DROIT, 3 DENTS, HÉLICES VARIABLES

Référence	DC	АРМХ	LH	DCONMS	ZEFP	EP7020	Туре
IMX10S3HV10008	10	8.5	16	9.7	3	•	1
IMX12S3HV12009	12	9.6	19	11.7	3	•	2
IMX16S3HV16012	16	12.8	24	15.5	3	•	2
IMX20S3HV20016	20	16	30	19.5	3	•	2
IMX25S3HV25020	25	20	37.5	24.5	3	•	2
							1/1

CONDITIONS DE COUPE RECOMMANDÉES

CONTOURNAGE

	Matière	DC	Vc	n	fz	Vf	ар	ae
	A -i	10	150	4800	0.09	1300	8	2
Р	Acier carbone, – acier allié, –	12	150	4000	0.09	1100	9.6	2.4
	acier doux,	16	150	3000	0.1	900	12.8	3.2
N	Cuivre, alliages de cuivre -	20	150	2400	0.1	720	16	4
IN	Culvre, attlages de culvre	25	150	1900	0.12	680	20	5
		10	120	3800	0.06	680	8	2
	[<i>.</i>	12	120	3200	0.065	620	9.6	2.4
Р	Acier pré-traité, alliage acier outil	16	120	2400	0.075	540	12.8	3.2
	alliage acier outil	20	120	1900	0.075	430	16	4
		25	120	1500	0.075	340	20	5
		10	75	2400	0.06	430	8	2
		12	75	2000	0.065	390	9.6	2.4
М	Acier inoxydable type PH, alliage de chrome cobalt	16	75	1500	0.075	340	12.8	3.2
	attrage de em onte cobatt	20	75	1200	0.075	270	16	4
		25	75	950	0.075	210	20	5
		10	40	1300	0.04	160	8	1
		12	40	1100	0.045	150	9.6	1.2
S	Alliages réfractaires	16	40	800	0.05	120	12.8	1.6
		20	40	640	0.05	96	16	2
	_	25	40	510	0.05	77	20	2.5
	A - i i	10	100	3200	0.075	720	8	2
М	Acier inoxydable austénitique - et ferritique	12	100	2700	0.08	650	9.6	2.4
		16	100	2000	0.09	540	12.8	3.2
_	- AII' 1 121	20	100	1600	0.09	430	16	4
S	Alliage de titane –	25	100	1300	0.09	350	20	5

^{1.} L'utilisation du liquide de coupe soluble permet un usinage efficace de l'acier inoxydable, des alliages de titane et des alliages réfractaires.

^{2.} Si la profondeur de coupe est faible, il est possible d'augmenter la vitesse de rotation et d'avance.

^{3.} Les embouts à hélice variable permettent d'avoir un meilleur contrôle des vibrations par rapport aux embouts standard. En revanche, si la rigidité de la machine ou l'installation de la pièce est médiocre, des vibrations ou un bruit anormal peuvent se produire. Dans ce cas, il convient de réduire proportionnellement la vitesse de rotation et d'avance ou de régler une plus faible profondeur de coupe.

RAINURAGE

	Matière	DC	Vc	n	fz	Vf	ар
		10	400	0000	0.07	200	-
	Acier carbone,	10	100	3200	0.04	380	5
Р	acier allié,	12	100	2700	0.05	410	6
	acier doux,	16	100	2000	0.07	420	8
N	Cuivre, alliages de cuivre -	20	100	1600	0.07	340	10
	·	25	100	1300	0.08	310	12
		10	80	2500	0.03	230	5
	Acier pré-traité,	12	80	2100	0.04	250	6
Р	alliage acier outil	16	80	1600	0.05	240	8
	_	20	80	1300	0.05	200	10
		25	80	1000	0.05	150	12
		10	60	1900	0.025	100	5
		12	60	1600	0.035	170	6
М	Acier inoxydable type PH, alliage de chrome cobalt -	16	60	1200	0.05	180	8
	attiage de cili offie cobatt =	20	60	950	0.05	140	10
		25	60	760	0.05	110	12
		10	30	950	0.02	57	2
	Ī	12	30	800	0.03	72	2.4
S	– Alliages réfractaires	16	30	600	0.05	90	3.2
	Ī	20	30	480	0.05	72	4
	-	25	30	380	0.05	57	5
		10	75	2400	0.03	200	5
М	Acier inoxydable austénitique - et ferritique _	12	75	2000	0.04	240	6
		16	75	1500	0.06	270	8
		20	75	1200	0.06	220	10
S	Alliage de titane -	25	75	950	0.06	170	12

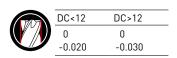
- 1. L'utilisation du liquide de coupe soluble permet un usinage efficace de l'acier inoxydable, des alliages de titane et des alliages réfractaires.
- Si la profondeur de coupe est faible, il est possible d'augmenter la vitesse de rotation et d'avance.
 Les embouts à hélice variable permettent d'avoir un meilleur contrôle des vibrations par rapport aux embouts standard. En revanche, si la rigidité de la machine ou l'installation de la pièce est médiocre, des vibrations ou un bruit anormal peuvent se produire. Dans ce cas, il convient de réduire proportionnellement la vitesse de rotation et d'avance ou de régler une plus faible profondeur de coupe.

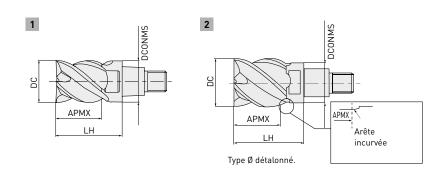
TRÉFLAGE

	Matière	DC	Vc	n	fz	Vf	ар	AZ
	Acier carbone,	10	100	3200	0.14	450	5	2.5
Р	acier allié,	12	100	2700	0.14	380	6	2.5
	acier doux,	16	100	2000	0.14	280	8	2.5
N	Cuivre, alliages de cuivre	20	100	1600	0.14	220	10	2.5
IN	Culvie, attlages de culvie	25	100	1300	0.14	180	12.5	2.5
		10	70	2200	0.09	200	5	2
		12	70	1900	0.09	170	6	2
Р	Acier pré-traité, alliage acier outil	16	70	1400	0.09	130	8	2
		20	70	1100	0.09	99	10	2
		25	70	890	0.09	80	12.5	2
		10	40	1300	0.03	39	5	0.6
		12	40	1100	0.03	33	6	0.6
М	Acier inoxydable type PH, alliage de chrome cobalt	16	40	800	0.03	24	8	0.6
	attrage de em ome cobatt	20	40	640	0.03	19	10	0.6
		25	40	510	0.03	15	12.5	0.6
	A -::	10	60	1900	0.03	57	5	0.6
М	Acier inoxydable austénitique et ferritique	12	60	1600	0.03	48	6	0.6
		16	60	1200	0.03	36	8	0.6
S	Alliago do titano	20	60	950	0.03	29	10	0.6
5	Alliage de titane —	25	60	760	0.03	23	12.5	0.6

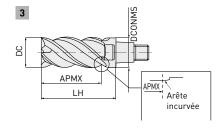
- 1. L'utilisation du liquide de coupe soluble permet un usinage efficace de l'acier inoxydable, des alliages de titane et des alliages réfractaires.
- 2. Les embouts à hélice variable permettent d'avoir un meilleur contrôle des vibrations par rapport aux embouts standard. En revanche, si la rigidité de la machine ou l'installation de la pièce est médiocre, des vibrations ou un bruit anormal peuvent se produire. Dans ce cas, il convient de réduire proportionnellement la vitesse de rotation et d'avance ou de régler une plus faible profondeur de coupe.

iMX-S4HV





EMBOUT DROIT, 4 DENTS, HÉLICES VARIABLES



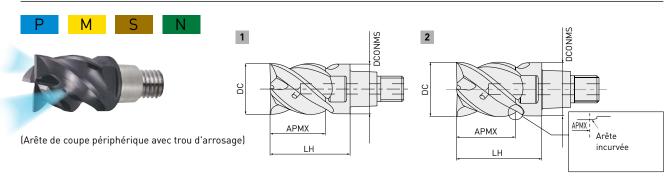
Référence	EP7020	DC	АРМХ	LH	DCONMS	ZEFP	Туре
IMX10S4HV10010	•	10	10.5	16	9.7	4	1
IMX10S4HV12012	•	12	12.5	19	9.7	4	2
IMX12S4HV12012	•	12	12.5	19	11.7	4	1
IMX12S4HV14014	•	14	14.5	22.5	11.7	4	2
IMX16S4HV16016	•	16	16.5	24	15.5	4	1
IMX16S4HV18018	•	18	18.5	27	15.5	4	2
IMX20S4HV20020	•	20	20	30	19.5	4	2
IMX20S4HV22023	•	22	23	33	19.5	4	2
IMX25S4HV25025	•	25	25	37.5	24.5	4	2
IMX25S4HV28029	•	28	29	41.5	24.5	4	2
IMX25S4HV30031	•	30	31	43.5	24.5	4	2
IMX25S4HV32033	•	32	33	45.5	24.5	4	2

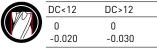
14 (Vc)

ARÊTE LONGUE

Référence	DC	АРМХ	LH	DCONMS	ZEFP	EP7020	Туре
IMX16S4HV16032	16	32	40	15.5	4	•	3
IMX20S4HV20040	20	40	50	19.5	4	•	3
							1/1

iMX-S4HV-S





EMBOUT DROIT, 4 DENTS, HÉLICES VARIABLES, AVEC TROU D'ARROSAGE

Référence	EP7020	DC	АРМХ	LH	DCONMS	ZEFP	Туре
IMX10S4HV10010S	•	10	10.5	16	9.7	4	1
IMX12S4HV12012S	•	12	12.5	19	11.7	4	1
IMX16S4HV16016S	•	16	16.5	24	15.5	4	1
IMX20S4HV20020S	•	20	20	30	19.5	4	2
IMX25S4HV25025S	•	25	25	37.5	24.5	4	2
							1/1

• : Article stocké. ★ : Article stocké au Japon.

iMX-S4HV/S4HV-S

CONDITIONS DE COUPE RECOMMANDÉES

CONTOURNAGE

	Matière	DC	Vc	n	fz	Vf	ар	ae
	Acier carbone, –	10	150	4800	0.09	1700	10	2
Р	acier allié,	12	150	4000	0.09	1400	12	2.4
	acier doux,	16	150	3000	0.1	1200	16	3.2
N	Cuivre, alliages de cuivre —	20	150	2400	0.1	960	20	4
IN	Culvie, attlages de culvie	25	150	1900	0.12	910	25	5
	_	10	120	3800	0.06	910	10	2
		12	120	3200	0.065	830	12	2.4
Р	Acier pré-traité, alliage acier outil	16	120	2400	0.075	720	16	3.2
	alliage acier outil -	20	120	1900	0.075	570	20	4
		25	120	1500	0.075	450	25	5
		10	75	2400	0.06	580	10	2
		12	75	2000	0.065	520	12	2.4
М	Acier inoxydable type PH, alliage de chrome cobalt =	16	75	1500	0.075	450	16	3.2
	attiage de emonie cobatt =	20	75	1200	0.075	360	20	4
		25	75	950	0.075	290	25	5
		10	40	1300	0.04	210	10	1
		12	40	1100	0.045	200	12	1.2
S	Alliages réfractaires	16	40	800	0.05	160	16	1.6
		20	40	640	0.05	130	20	2
	_	25	40	510	0.05	100	25	2.5
	A	10	100	3200	0.075	960	10	2
М	Acier inoxydable austénitique – et ferritique _	12	100	2700	0.08	860	12	2.4
		16	100	2000	0.09	720	16	3.2
_	=	20	100	1600	0.09	580	20	4
S	Alliage de titane	25	100	1300	0.09	470	25	5

^{1.} L'utilisation du liquide de coupe soluble permet un usinage efficace de l'acier inoxydable, des alliages de titane et des alliages réfractaires.

^{2.} Si la profondeur de coupe est faible, il est possible d'augmenter la vitesse de rotation et d'avance.

^{3.} Les embouts à hélice variable permettent d'avoir un meilleur contrôle des vibrations par rapport aux embouts standard. En revanche, si la rigidité de la machine ou l'installation de la pièce est médiocre, des vibrations ou un bruit anormal peuvent se produire. Dans ce cas, il convient de réduire proportionnellement la vitesse de rotation et d'avance ou de régler une plus faible profondeur de coupe.

iMX-S4HV/S4HV-S - RAINURAGE

Matière	DC	Vc	n	fz	Vf	ар
Asian and an	10	100	3200	0.04	510	5
Acier carbone, – acier allié,	12	100	2700	0.05	540	6
acier doux,	16	100	2000	0.07	560	8
	20	100	1600	0.07	450	10
Cuivre, alliages de cuivre –	25	100	1300	0.08	420	12
	10	80	2500	0.03	300	5
	12	80	2100	0.04	340	6
Acier pré-traité, alliage acier outil _	16	80	1600	0.05	320	8
attrage acres outit	20	80	1300	0.05	260	10
_	25	80	1000	0.05	200	12
	10	60	1900	0.025	190	5
_	12	60	1600	0.035	220	6
Acier inoxydable type PH, alliage de chrome cobalt	16	60	1200	0.05	240	8
attiage de chrome cobatt –	20	60	950	0.05	190	10
	25	60	760	0.05	150	12
	10	30	950	0.02	76	2
	12	30	800	0.03	96	2.4
Alliages réfractaires	16	30	600	0.05	120	3.2
	20	30	480	0.05	96	4
-	25	30	380	0.05	76	5
	10	75	2400	0.03	290	5
Acier inoxydable austénitique et ferritique	12	75	2000	0.04	320	6
et ferritique	16	75	1500	0.06	360	8
Alliana da titana	20	75	1200	0.06	290	10
Alliage de titane	25	75	950	0.06	230	12

iMX-S4HV/S4HV-S

CONTOURNAGE

	Matière	L/D	DC	Vc	n	fz	Vf	ар	ae
			12	150	4000	0.09	1400	12	1.2
			14	150	3400	0.09	1200	14	1.4
			18	150	2700	0.1	1100	18	1.8
		≼3	22	150	2200	0.1	880	22	2.2
	Acier carbone,		28	150	1700	0.12	820	28	2.8
Р	acier allié,		30	150	1600	0.12	770	30	3
	acier doux,		32	150	1500	0.12	720	32	3.2
			12	90	2400	0.07	670	12	0.5
			14	90	2000	0.07	560	14	0.6
			18	90	1600	0.08	510	18	0.7
		5	22	90	1300	0.08	420	22	0.9
			28	90	1000	0.1	400	28	1.1
			30	90	950	0.1	380	30	1.2
			32	90	900	0.1	360	32	1.3
			12	60	1600	0.06	380	12	0.2
NI	Cuivre, alliages de cuivre		14	60	1400	0.06	340	14	0.3
N	Culvie, attlages de culvie		18	60	1100	0.07	310	18	0.4
		7	22	60	870	0.07	240	22	0.4
			28	60	680	0.08	220	28	0.6
			30	60	640	0.08	200	30	0.6
			32	60	600	0.08	190	32	0.6
			12	120	3200	0.06	770	12	1.2
			14	120	2700	0.065	700	14	1.4
			18	120	2100	0.075	630	18	1.8
		≤ 3	22	120	1700	0.075	510	22	2.2
			28	120	1400	0.075	420	28	2.8
			30	120	1300	0.075	390	30	3
			32	120	1200	0.075	360	32	3.2
			12	70	1900	0.05	380	12	0.5
			14	70	1600	0.05	320	14	0.6
	Acier pré-traité,		18	70	1200	0.06	290	18	0.7
Р	alliage acier outil	5	22	70	1000	0.06	240	22	0.9
			28	70	800	0.06	190	28	1.1
			30	70	740	0.06	180	30	1.2
			32	70	700	0.06	170	32	1.3
			12	50	1300	0.04	210	12	0.2
			14	50	1100	0.05	220	14	0.3
		_	18	50	880	0.05	180	18	0.4
		7	22	50	720	0.05	140	22	0.4
			28	50	570	0.05	110	28	0.6
			30	50	530	0.05	110	30	0.6
			32	50	500	0.05	100	32	0.6 1/3

iMX-S4HV/S4HV-S - CONTOURNAGE

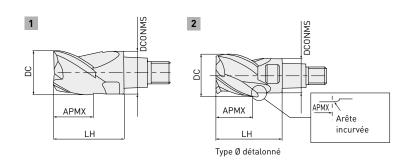
	Matière	L/D	DC	Vc	n	fz	Vf	ар	ae
			12	75	2000	0.06	480	12	1.2
			14	75	1700	0.065	440	14	1.4
			18	75	1300	0.075	390	18	1.8
		≼3	22	75	1100	0.075	330	22	2.2
			28	75	850	0.075	260	28	2.8
			30	75	800	0.075	240	30	3
			32	75	750	0.075	230	32	3.2
			12	50	1300	0.05	260	12	0.5
			14	50	1100	0.05	220	14	0.6
			18	50	880	0.06	210	18	0.7
М	Acier inoxydable type PH, alliage de chrome cobalt	5	22	50	720	0.06	170	22	0.9
	attiage de chi offie cobatt		28	50	570	0.06	140	28	1.1
			30	50	530	0.06	130	30	1.2
			32	50	500	0.06	120	32	1.3
			12	24	640	0.04	100	12	0.2
			14	24	550	0.05	110	14	0.3
			18	24	420	0.05	84	18	0.4
		7	22	24	350	0.05	70	22	0.4
			28	24	270	0.05	54	28	0.6
			30	24	250	0.05	50	30	0.6
			32	24	240	0.05	48	32	0.6
			12	30	800	0.04	130	12	0.9
			14	30	680	0.045	120	14	1.1
			18	40	710	0.05	140	18	1.4
		≤ 3	22	40	580	0.05	120	22	1.7
			28	40	450	0.05	90	28	2.1
			30	40	420	0.05	84	30	2.3
			32	40	400	0.05	80	32	2.4
			12	10	270	0.03	32	12	0.4
			14	10	230	0.04	37	14	0.4
			18	19	340	0.04	54	18	0.6
S	Alliages réfractaires	5	22	19	270	0.04	43	22	0.7
			28	19	220	0.04	35	28	0.8
			30	19	200	0.04	32	30	0.9
			32	19	190	0.04	30	32	1.0
			12	_	_	_	_	_	_
			14	_	_	_	_	_	_
			18	_	_	_	_	_	_
		7	22	_	_	_	_	_	_
			28	_	_	_	_	_	_
			30	_	_	_	_	_	_
			32	<u> </u>	_	_	_		_
									2/3

iMX-S4HV/S4HV-S - CONTOURNAGE

	Matière	L/D	DC	Vc	n	fz	Vf	ар	ae
								•	
			12	100	2700	0.075	810	12	1.2
			14	100	2300	0.08	740	14	1.4
			18	100	1800	0.09	650	18	1.8
		≼3	22	100	1400	0.09	500	22	2.2
	Acier inoxydable austénitique et ferritique –		28	100	1100	0.09	400	28	2.8
М			30	100	1100	0.09	400	30	3
			32	100	990	0.09	360	32	3.2
			12	60	1600	0.06	380	12	0.5
			14	60	1400	0.06	340	14	0.6
		5	18	60	1100	0.07	310	18	0.7
			22	60	870	0.07	240	22	0.9
			28	60	680	0.07	190	28	1.1
			30	60	640	0.07	180	30	1.2
	_		32	60	600	0.07	170	32	1.3
			12	32	850	0.05	170	12	0.2
S	Alliago do titano		14	32	730	0.06	180	14	0.3
3	5 Alliage de titane		18	32	570	0.06	140	18	0.4
		7	22	32	460	0.06	110	22	0.4
			28	32	360	0.06	86	28	0.6
			30	32	340	0.06	82	30	0.6
			32	32	320	0.06	77	32	0.6

- 1. L'utilisation du liquide de coupe soluble permet un usinage efficace de l'acier inoxydable, des alliages de titane et des alliages réfractaires.
- Si la profondeur de coupe est faible, il est possible d'augmenter la vitesse de rotation et d'avance.
 Les embouts à hélice variable permettent d'avoir un meilleur contrôle des vibrations par rapport aux embouts standard. En revanche, si la rigidité de la machine ou l'installation de la pièce est médiocre, des vibrations ou un bruit anormal peuvent se produire. Dans ce cas, il convient de réduire proportionnellement la vitesse de rotation et d'avance ou de régler une plus faible profondeur de coupe.

iMX-S3A



EMBOUT DROIT, 3 DENTS, POUR ALLIAGE D'ALUMINIUM

Référence	ET2020	DC	АРМХ	LH	DCONMS	ZEFP	Туре
IMX10S3A10008	•	10	8.5	16	9.7	3	1
IMX10S3A12010	•	12	10.1	19	9.7	3	2
IMX12S3A12009	•	12	9.6	19	11.7	3	2
IMX12S3A14011	•	14	11.7	22.5	11.7	3	2
IMX16S3A16012	•	16	12.8	24	15.5	3	2
IMX16S3A18014	•	18	14.9	27	15.5	3	2
IMX20S3A20016	•	20	16	30	19.5	3	2
IMX20S3A22018	•	22	18.6	33	19.5	3	2
IMX25S3A25020	•	25	20	37.5	24.5	3	2
IMX25S3A28023	•	28	23.4	41.5	24.5	3	2

• : Article stocké. ★ : Article stocké au Japon.

iMX-S3A

CONDITIONS DE COUPE RECOMMANDÉES

CONTOURNAGE

	Matière	DC	Vc	n	fz	Vf	ар	ae
		10	500	16000	0.117	5600	8	3
		12	500	13000	0.118	4600	9.6	3.6
Ν	Alliage d'aluminium	16	500	10000	0.153	4600	12.8	4.8
		20	500	8000	0.175	4200	16	6
		25	500	6000	0.211	3800	20	7.5

1/1

RAINURAGE

Matière	DC	Vc	n	fz	Vf	ар
	10	500	16000	0.068	3300	5
	12	500	13000	0.072	2800	6
N Alliage d'aluminium	16	500	10000	0.093	2800	8
	20	500	8000	0.108	2600	10
	25	500	6000	0.127	2300	12.5

IMX-S3A - CONDITIONS DE COUPE RECOMMANDÉES

TRÉFLAGE

	Matière	DC	Vc	n	fz	Vf	ар	AZ
		10	300	9600	0.1	960	5	2.5
		12	300	8000	0.1	800	6	2.5
Ν	Alliage d'aluminium	16	300	6000	0.1	600	8	2.5
		20	300	4800	0.1	480	10	2.5
		25	300	3800	0.1	380	12.5	2.5

1/1

CONTOURNAGE

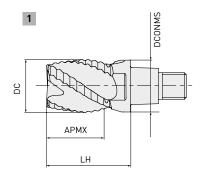
Matière	L/D	DC	Vc	n	fz	Vf	ар	ae
		12	500	13000	0.117	4600	9.6	2.4
		14	500	11000	0.118	3900	11.2	2.8
	≤ 3	18	500	8800	0.153	4000	14.4	3.6
		22	500	7200	0.175	3800	17.6	4.4
		28	500	5700	0.211	3600	22.4	5.6
		12	300	8000	0.09	2200	9.6	1.0
		14	300	6800	0.09	1800	11.2	1.1
N Alliage d'aluminium	5	18	300	5300	0.12	1900	14.4	1.4
		22	300	4300	0.14	1800	17.6	1.8
		28	300	3400	0.17	1700	22.4	2.2
		12	200	5300	0.08	1300	9.6	0.5
		14	200	4500	0.08	1100	11.2	0.6
	7	18	200	3500	0.11	1200	14.4	0.7
		22	200	2900	0.12	1000	17.6	0.9
		28	200	2300	0.15	1000	22.4	1.1

^{1.} L'utilisation d'un liquide de coupe soluble est recommandée.

Si la rigidité de la machine ou de la pièce est médiocre, des vibrations peuvent se produire.
 Dans ce cas, il convient de réduire proportionnellement la vitesse de rotation et d'avance ou de régler une plus faible profondeur de coupe.

iMX-R4F

EMBOUT PROFIL D'ÉBAUCHE, 4 DENTS



Référence	EP7020	DC	АРМХ	LH	DCONMS	ZEFP	Туре
IMX10R4F10010	•	10	10.5	16	9.7	4	
IMX12R4F12012	•	12	12.5	19	11.7	4	
IMX16R4F16016	•	16	16.5	24	15.5	4	1
IMX20R4F20021	•	20	21	30	19.5	4	-
IMX25R4F25026	•	25	26	37.5	24.5	4	

iMX-R4F

CONDITIONS DE COUPE RECOMMANDÉES

CONTOURNAGE

	Matière	DC	Vc	n	fz	Vf	ар	ae
	A -i	10	150	4800	0.045	860	8	4
_	Acier carbone, - acier allié,	12	150	4000	0.045	720	9.6	4.8
	acier doux,	16	150	3000	0.05	600	12.8	6.4
	Cuivro alliagos do suivro	20	150	2400	0.05	480	16	8
١	Cuivre, alliages de cuivre -	25	150	1900	0.06	460	20	10
		10	120	3800	0.03	460	8	4
	-	12	120	3200	0.033	420	9.6	4.8
	Acier pré-traité, alliage acier outil	16	120	2400	0.038	360	12.8	6.4
	attiage acier batti	20	120	1900	0.038	290	16	8
	_	25	120	1500	0.038	230	20	10
		10	75	2400	0.03	290	8	4
		12	75	2000	0.033	260	9.6	4.8
	Acier inoxydable type PH, alliage de chrome cobalt	16	75	1500	0.038	230	12.8	6.4
	attiage ac emonie cobatt	20	75	1200	0.038	180	16	8
		25	75	950	0.038	140	20	10
		10	40	1300	0.04	210	8	1
		12	40	1100	0.045	200	9.6	1.2
5	Alliages réfractaires	16	40	800	0.05	160	12.8	1.6
		20	40	640	0.05	130	16	2
	_	25	40	510	0.05	100	20	2.5
	A sion in suudahla suuténiti	10	100	3200	0.038	480	8	4
4	Acier inoxydable austénitique - et ferritique	12	100	2700	0.04	430	9.6	4.8
		16	100	2000	0.045	360	12.8	6.4
	All:	20	100	1600	0.045	290	16	8
5	Alliage de titane	25	100	1300	0.045	230	20	10

^{1.} L'utilisation du liquide de coupe soluble permet un usinage efficace de l'acier inoxydable, des alliages de titane et des alliages réfractaires.

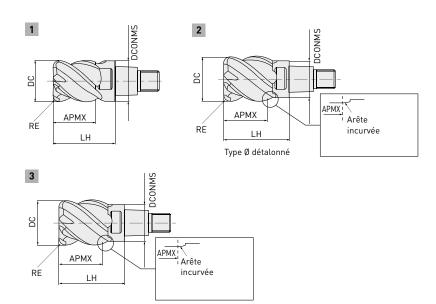
^{2.} Si la profondeur de coupe est faible, il est possible d'augmenter la vitesse de rotation et d'avance.

Si la rigidité de la machine ou de la pièce est médiocre, des vibrations peuvent se produire.
 Dans ce cas, il convient de réduire proportionnellement la vitesse de rotation et d'avance ou de régler une plus faible profondeur de coupe.

IMX-R4F - CONDITIONS DE COUPE RECOMMANDÉES

RAINURAGE

Matière	DC	Vc	n	fz	Vf	ар
	10	100	2200	0.07	F10	F
Acier carbone,	10	100	3200	0.04	510	5
acier allié,	12	100	2700	0.045	490	6
acier doux,	16	100	2000	0.05	400	8
Cuivre, alliages de cuivre	20	100	1600	0.05	320	10
outvie, attrages de curvie	25	100	1300	0.06	310	12
	10	80	2500	0.03	300	5
	12	80	2100	0.032	270	6
Acier pré-traité, alliage acier outil	16	80	1600	0.038	240	8
attiage acier outit	20	80	1300	0.038	200	10
·	25	80	1000	0.038	150	12
	10	40	1300	0.016	83	4
	12	40	1100	0.02	88	4.8
Acier inoxydable type PH, alliage de chrome cobalt	16	40	800	0.024	77	6.4
attiage de chi offie cobatt	20	40	640	0.027	70	8
	25	40	510	0.027	55	10
	10	60	1900	0.02	150	4
Acier inoxydable austénitique et ferritique	12	60	1600	0.025	160	4.8
	16	60	1200	0.03	140	6.4
	20	60	950	0.034	130	8
Alliage de titane	25	60	760	0.034	100	10


- 1. L'utilisation du liquide de coupe soluble permet un usinage efficace de l'acier inoxydable, des alliages de titane et des alliages réfractaires.
- 2. Si la profondeur de coupe est faible, il est possible d'augmenter la vitesse de rotation et d'avance.
- Si la rigidité de la machine ou de la pièce est médiocre, des vibrations peuvent se produire.
 Dans ce cas, réduisez la vitesse de rotation et l'avance de manière proportionnelle ou réduisez la profondeur de coupe.

iMX-C4HV

EMBOUTE TORIQUE, 4 DENTS, HÉLICES VARIABLES

Référence	EP7020	DC	RE	АРМХ	LH	DCONMS	ZEFP	Туре
IMX10C4HV100R03010	•	10	0.3	10	16	9.7	4	3
IMX10C4HV100R05010	•	10	0.5	10.5	16	9.7	4	1
IMX10C4HV100R10010	•	10	1	10.5	16	9.7	4	1
IMX10C4HV100R15010	•	10	1.5	10.5	16	9.7	4	1
IMX10C4HV100R20010	•	10	2	10.5	16	9.7	4	1
IMX10C4HV100R25010	•	10	2.5	10.5	16	9.7	4	1
IMX10C4HV100R30010	•	10	3	10.5	16	9.7	4	1
IMX10C4HV110R05011	•	11	0.5	11.5	16	9.7	4	2
IMX10C4HV110R10011	*	11	1	11.5	16	9.7	4	2
IMX10C4HV120R03012	•	12	0.3	12.5	19	9.7	4	2
IMX10C4HV120R05012	•	12	0.5	12.5	19	9.7	4	2
IMX10C4HV120R10012	•	12	1	12.5	19	9.7	4	2
IMX10C4HV120R20012	•	12	2	12.5	19	9.7	4	2
IMX12C4HV120R03012	•	12	0.3	12	19	11.7	4	3
IMX12C4HV120R05012	•	12	0.5	12.5	19	11.7	4	1
IMX12C4HV120R10012	•	12	1	12.5	19	11.7	4	1
IMX12C4HV120R15012	•	12	1.5	12.5	19	11.7	4	1
IMX12C4HV120R20012	•	12	2	12.5	19	11.7	4	1
IMX12C4HV120R25012	•	12	2.5	12.5	19	11.7	4	1
MX12C4HV120R30012	•	12	3	12.5	19	11.7	4	1
MX12C4HV120R40012	•	12	4	12	19	11.7	4	1
MX12C4HV130R05013	*	13	0.5	13.5	21.5	11.7	4	2
MX12C4HV130R10013	*	13	1	13.5	21.5	11.7	4	2

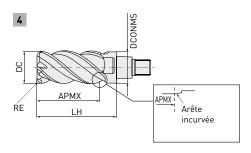
● : Article stocké. ★ : Article stocké au Japon.

imx-c4hv - emboute torique, 4 dents, hélices variables

Référence	EP7020	DC	RE	АРМХ	LH	DCONMS	ZEFP	Туре
IMX12C4HV140R03014	•	14	0.3	14.5	22.5	11.7	4	2
IMX12C4HV140R05014	•	14	0.5	14.5	22.5	11.7	4	2
IMX12C4HV140R10014	•	14	1	14.5	22.5	11.7	4	2
IMX12C4HV140R20014	•	14	2	14.5	22.5	11.7	4	2
IMX16C4HV160R03016	•	16	0.3	16	24	15.5	4	3
IMX16C4HV160R05016	•	16	0.5	16.5	24	15.5	4	1
IMX16C4HV160R10016	•	16	1	16.5	24	15.5	4	1
IMX16C4HV160R15016	•	16	1.5	16.5	24	15.5	4	1
IMX16C4HV160R20016	•	16	2	16.5	24	15.5	4	1
IMX16C4HV160R25016	•	16	2.5	16.5	24	15.5	4	1
IMX16C4HV160R30016	•	16	3	16.5	24	15.5	4	1
IMX16C4HV160R40016	•	16	4	16.5	24	15.5	4	1
IMX16C4HV160R50016	•	16	5	16.5	24	15.5	4	1
IMX16C4HV170R05017	*	17	0.5	17.5	26	15.5	4	2
IMX16C4HV170R10017	*	17	1	17.5	26	15.5	4	2
IMX16C4HV180R03018	•	18	0.3	18.5	27	15.5	4	2
IMX16C4HV180R05018	•	18	0.5	18.5	27	15.5	4	2
IMX16C4HV180R10018	•	18	1	18.5	27	15.5	4	2
IMX16C4HV180R20018	•	18	2	18.5	27	15.5	4	2
IMX16C4HV180R30018	•	18	3	18.5	27	15.5	4	2
IMX20C4HV200R03020	•	20	0.3	20	30	19.5	4	3
IMX20C4HV200R05020	•	20	0.5	20	30	19.5	4	3
IMX20C4HV200R10020	•	20	1	20	30	19.5	4	3
IMX20C4HV200R15020	•	20	1.5	20	30	19.5	4	3
IMX20C4HV200R20020	•	20	2	20	30	19.5	4	3
IMX20C4HV200R25020	•	20	2.5	20	30	19.5	4	3
IMX20C4HV200R30020	•	20	3	20	30	19.5	4	3
IMX20C4HV200R40020	•	20	4	20	30	19.5	4	3
IMX20C4HV200R50020	•	20	5	20	30	19.5	4	3
IMX20C4HV200R60020	•	20	6	20	30	19.5	4	3
IMX20C4HV200R63520	•	20	6.35	20	30	19.5	4	3
IMX20C4HV220R05023	*	22	0.5	23	33	19.5	4	2
IMX20C4HV220R10023	•	22	1	23	33	19.5	4	2
IMX20C4HV220R20023	•	22	2	23	33	19.5	4	2
IMX20C4HV220R30023	•	22	3	23	33	19.5	4	2
IMX25C4HV250R10025	•	25	1	25	37.5	24.5	4	3
IMX25C4HV250R20025	•	25	2	25	37.5	24.5	4	3
IMX25C4HV250R30025	•	25	3	25	37.5	24.5	4	3
IMX25C4HV250R40025	•	25	4	25	37.5	24.5	4	3
IMX25C4HV250R50025	•	25	5	25	37.5	24.5	4	3
IMX25C4HV250R60025	•	25	6	25	37.5	24.5	4	3
IMX25C4HV250R63525	•	25	6.35	25	37.5	24.5	4	3
IMX25C4HV250R63526	•	25	6.35	26	37.5	24.5	4	1
IMX25C4HV280R10029	•	28	1	29	41.5	24.5	4	2
IMX25C4HV280R30029	•	28	3	29	41.5	24.5	4	2
		20	0	2,	71.0	24.0	-	2/2

iMX-C4HV

EMBOUTE TORIQUE, 4 DENTS, HÉLICES VARIABLES, GRANDE LONGUEUR DE COUPE (2D)

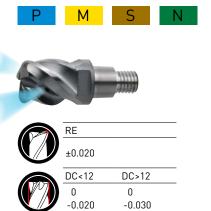


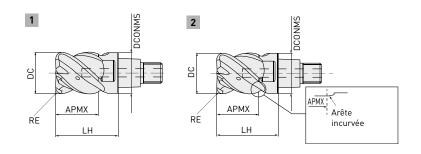
.0.000

±0.020

DC<12	DC>12	
0	0	
-0.020	-0.030	

Référence	EP7020	DC	RE	АРМХ	LH	DCONMS	ZEFP	Туре
IMX16C4HV160R10032	•	16	1	32	40	15.5	4	
IMX16C4HV160R30032	•	16	3	32	40	15.5	4	,
IMX20C4HV200R10040	•	20	1	40	50	19.5	4	4
IMX20C4HV200R30040	•	20	3	40	50	19.5	4	


1,



iMX-C4HVS

EMBOUT TORIQUE, 4 DENTS À HÉLICES VARIABLES, AVEC TROU D'ARROSAGE

Référence	EP7020	DC	RE	АРМХ	LH	DCONMS	ZEFP	Туре
IMX10C4HV100R03010S	ш	10	0.3	10	16	9.7	4	2
IMX10C4HV100R05010S	•	10	0.5	10	16	9.7	4	2
IMX10C4HV100R10010S	•	10	1	10.5	16	9.7	4	1
IMX10C4HV100R15010S	•	10	1.5	10	16	9.7	4	2
IMX10C4HV100R20010S	•	10	2	10	16	9.7	4	2
IMX10C4HV100R30010S	•	10	3	10	16	9.7	4	2
IMX12C4HV120R03012S	•	12	0.3	12	19	11.7	4	2
IMX12C4HV120R05012S	•	12	0.5	12	19	11.7	4	2
IMX12C4HV120R10012S	•	12	1	12.5	19	11.7	4	1
IMX12C4HV120R15012S	•	12	1.5	12	19	11.7	4	2
IMX12C4HV120R20012S	•	12	2	12	19	11.7	4	2
IMX12C4HV120R30012S	•	12	3	12	19	11.7	4	2
IMX12C4HV120R40012S	•	12	4	12	19	11.7	4	2
IMX16C4HV160R05016S	•	16	0.5	16	24	15.5	4	2
IMX16C4HV160R10016S	•	16	1	16.5	24	15.5	4	1
IMX16C4HV160R15016S	•	16	1.5	16	24	15.5	4	2
IMX16C4HV160R20016S	•	16	2	16	24	15.5	4	2
IMX16C4HV160R30016S	•	16	3	16	24	15.5	4	2
IMX16C4HV160R40016S	•	16	4	16	24	15.5	4	2
IMX20C4HV200R05020S	•	20	0.5	20	30	19.5	4	2
IMX20C4HV200R10020S	•	20	1	20	30	19.5	4	2
IMX20C4HV200R15020S	•	20	1.5	20	30	19.5	4	2
IMX20C4HV200R20020S	•	20	2	20	30	19.5	4	2
IMX20C4HV200R30020S	•	20	3	20	30	19.5	4	2
IMX20C4HV200R40020S	•	20	4	20	30	19.5	4	2
IMX20C4HV200R60020S	•	20	6	20	30	19.5	4	2
IMX20C4HV200R63520S	•	20	6.35	20	30	19.5	4	2

imx-c4HVS - embout torique, 4 dents à hélices variables, avec trou d'arrosage

Référence	EP7020	DC	RE	АРМХ	LH	DCONMS	ZEFP	Туре
IMX25C4HV250R10025S	•	25	1	25	37.5	24.5	4	2
IMX25C4HV250R15025S	•	25	1.5	25	37.5	24.5	4	2
IMX25C4HV250R20025S	•	25	2	25	37.5	24.5	4	2
IMX25C4HV250R30025S	•	25	3	25	37.5	24.5	4	2
IMX25C4HV250R40025S	•	25	4	25	37.5	24.5	4	2
IMX25C4HV250R60025S	•	25	6	25	37.5	24.5	4	2
IMX25C4HV250R63525S	•	25	6.35	25	37.5	24.5	4	2

● : Article stocké. ★ : Article stocké au Japon.

iMX-C4HV/C4HV-S

CONDITIONS DE COUPE RECOMMANDÉES

CONTOURNAGE

	Matière	DC	Vc	n	fz	Vf	ар	ae
	Acier carbone, -	10	150	4800	0.09	1700	10	2
Р	acier allié,	12	150	4000	0.09	1400	12	2.4
	acier doux,	16	150	3000	0.1	1200	16	3.2
N	Cuivre, alliages de cuivre -	20	150	2400	0.1	960	20	4
IN	Culvie, attlages de culvie	25	150	1900	0.12	910	25	5
	_	10	120	3800	0.06	910	10	2
		12	120	3200	0.065	830	12	2.4
Р	Acier pré-traité, alliage acier outil	16	120	2400	0.075	720	16	3.2
	attiage defer outit	20	120	1900	0.075	570	20	4
		25	120	1500	0.075	450	25	5
		10	75	2400	0.06	580	10	2
		12	75	2000	0.065	520	12	2.4
М	Acier inoxydable type PH, alliage de chrome cobalt =	16	75	1500	0.075	450	16	3.2
	amage ac em em e cozam	20	75	1200	0.075	360	20	4
		25	75	950	0.075	290	25	5
	_	10	40	1300	0.04	210	10	1
		12	40	1100	0.045	200	12	1.2
S	Alliages réfractaires	16	40	800	0.05	160	16	1.6
		20	40	640	0.05	130	20	2
		25	40	510	0.05	100	25	2.5
	Aciar inavudable auctóniticus	10	100	3200	0.075	960	10	2
М	Acier inoxydable austénitique - et ferritique	12	100	2700	0.08	860	12	2.4
		16	100	2000	0.09	720	16	3.2
_	Alliaga da titana	20	100	1600	0.09	580	20	4
S	Alliage de titane –	25	100	1300	0.09	470	25	5

imx-c4hv/c4hv-s - conditions de coupe recommandées

RAINURAGE

	Matière	DC	Vc	n	fz	Vf	ар
		10	100	3200	0.04	510	5
	Acier carbone,	12	100	2700	0.05	540	6
	acier allié, acier doux,	16	100	2000	0.07	560	8
		20	100	1600	0.07	450	10
N	Cuivre, alliages de cuivre	25	100	1300	0.08	420	12
		10	80	2500	0.03	300	5
		12	80	2100	0.04	340	6
	Acier pré-traité,	16	80	1600	0.05	320	8
	alliage acier outil	20	80	1300	0.05	260	10
		25	80	1000	0.05	200	12
		10	60	1900	0.025	190	5
		12	60	1600	0.035	220	6
	Acier inoxydable type PH, alliage de chrome cobalt	16	60	1200	0.05	240	8
	attiage de chi offie cobatt =	20	60	950	0.05	190	10
		25	60	760	0.05	150	12
		10	30	950	0.02	76	2
		12	30	800	0.03	96	2.4
S	Alliages réfractaires	16	30	600	0.05	120	3.2
		20	30	480	0.05	96	4
	_	25	30	380	0.05	76	5
	Asian in social black and fair	10	75	2400	0.03	290	5
	Acier inoxydable austénitique et ferritique	12	75	2000	0.04	320	6
		16	75	1500	0.06	360	8
	Alliana da titana	20	75	1200	0.06	290	10
5	Alliage de titane	25	75	950	0.06	230	12

1/1

31

● : Article stocké. ★ : Article stocké au Japon.

iMX-C4HV/C4HV-S

CONTOURNAGE

		L/D	DC	Vc	n	fz	Vf	ар	ae
			12	150	4000	0.09	1400	12	1.2
			14	150	3400	0.09	1200	14	1.4
			18	150	2700	0.1	1100	18	1.8
		≤ 3	22	150	2200	0.1	880	22	2.2
	Acier carbone,		28	150	1700	0.12	820	28	2.8
	acier carbone, acier allié,		30	150	1600	0.12	770	30	3
	acier doux,		32	150	1500	0.12	720	32	3.2
	_		12	90	2400	0.07	670	12	0.5
			14	90	2000	0.07	560	14	0.6
			18	90	1600	0.08	510	18	0.7
		5	22	90	1300	0.08	420	22	0.9
			28	90	1000	0.1	400	28	1.1
			30	90	950	0.1	380	30	1.2
			32	90	900	0.1	360	32	1.3
	_		12	60	1600	0.06	380	12	0.2
	0		14	60	1400	0.06	340	14	0.3
N	Cuivre, alliages de cuivre		18	60	1100	0.07	310	18	0.4
		7	22	60	870	0.07	240	22	0.4
			28	60	680	0.08	220	28	0.6
			30	60	640	0.08	200	30	0.6
			32	60	600	0.08	190	32	0.6
			12	120	3200	0.06	770	12	1.2
			14	120	2700	0.065	700	14	1.4
			18	120	2100	0.075	630	18	1.8
		≼3	22	120	1700	0.075	510	22	2.2
			28	120	1400	0.075	420	28	2.8
			30	120	1300	0.075	390	30	3
	_		32	120	1200	0.075	360	32	3.2
			12	70	1900	0.05	380	12	0.5
			14	70	1600	0.05	320	14	0.6
	Acier pré-traité,		18	70	1200	0.06	290	18	0.7
	alliage acier outil	5	22	70	1000	0.06	240	22	0.9
			28	70	800	0.06	190	28	1.1
			30	70	740	0.06	180	30	1.2
			32	70	700	0.06	170	32	1.3
			12	50	1300	0.04	210	12	0.2
			14	50	1100	0.05	220	14	0.3
		_	18	50	880	0.05	180	18	0.4
		7	22	50	720	0.05	140	22	0.4
			28	50	570	0.05	110	28	0.6
			30	50	530	0.05	110	30	0.6
			32	50	500	0.05	100	32	0.6

iMX-C4HV/C4HV-S - CONTOURNAGE

	Matière	L/D	DC	Vc	n	fz	Vf	ар	ae
			12	75	2000	0.06	480	12	1.2
			14	75	1700	0.065	440	14	1.4
			18	75	1300	0.075	390	18	1.8
		≤ 3	22	75	1100	0.075	330	22	2.2
			28	75	850	0.075	260	28	2.8
			30	75	800	0.075	240	30	3
			32	75	750	0.075	230	32	3.2
			12	50	1300	0.05	260	12	0.5
			14	50	1100	0.05	220	14	0.6
			18	50	880	0.06	210	18	0.7
М	Acier inoxydable type PH, alliage de chrome cobalt	5	22	50	720	0.06	170	22	0.9
	attiage de em onic cobatt		28	50	570	0.06	140	28	1.1
			30	50	530	0.06	130	30	1.2
			32	50	500	0.06	120	32	1.3
			12	24	640	0.04	100	12	0.2
			14	24	550	0.05	110	14	0.3
			18	24	420	0.05	84	18	0.4
		7	22	24	350	0.05	70	22	0.4
			28	24	270	0.05	54	28	0.6
			30	24	250	0.05	50	30	0.6
			32	24	240	0.05	48	32	0.6
			12	30	800	0.04	130	12	0.9
			14	30	680	0.045	120	14	1.1
			18	40	710	0.05	140	18	1.4
		≤ 3	22	40	580	0.05	120	22	1.7
			28	40	450	0.05	90	28	2.1
			30	40	420	0.05	84	30	2.3
			32	40	400	0.05	80	32	2.4
			12	10	270	0.03	32	12	0.4
			14	10	230	0.04	37	14	0.4
			18	19	340	0.04	54	18	0.6
S	Alliages réfractaires	5	22	19	270	0.04	43	22	0.7
			28	19	220	0.04	35	28	0.8
			30	19	200	0.04	32	30	0.9
			32	19	190	0.04	30	32	1.0
			12	_	_	_	_	_	_
			14	_	_	_	_	_	
			18	_	_	_	_	_	_
		7	22	_	_	_	_	_	_
			28	_	_	_	_	_	_
			30	_	_	_	_	_	_
			32		_	_	_	_	_

iMX-C4HV/C4HV-S - CONTOURNAGE

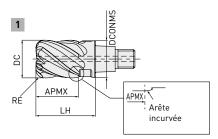
	Matière	L/D	DC	Vc	n	fz	Vf	ар	ae
			12	100	2700	0.075	810	12	1.2
			14	100	2300	0.073	740	14	1.4
			18	100	1800	0.09	650	18	1.8
		≤ 3	22	100	1400	0.09	500	22	2.2
			28	100	1100	0.09	400	28	2.8
М	Acier inoxydable austénitique et ferritique		30	100	1100	0.09	400	30	3
	et lei i itique		32	100	990	0.09	360	32	3.2
	_		12	60	1600	0.06	380	12	0.5
		5	14	60	1400	0.06	340	14	0.6
			18	60	1100	0.07	310	18	0.7
			22	60	870	0.07	240	22	0.9
			28	60	680	0.07	190	28	1.1
			30	60	640	0.07	180	30	1.2
	_		32	60	600	0.07	170	32	1.3
			12	32	850	0.05	170	12	0.2
S	Alliago do titano		14	32	730	0.06	180	14	0.3
3	Alliage de titane		18	32	570	0.06	140	18	0.4
		7	22	32	460	0.06	110	22	0.4
			28	32	360	0.06	86	28	0.6
			30	32	340	0.06	82	30	0.6
			32	32	320	0.06	77	32	0.6

^{1.} L'utilisation du liquide de coupe soluble permet un usinage efficace de l'acier inoxydable, des alliages de titane et des alliages réfractaires.

Si la profondeur de coupe est faible, il est possible d'augmenter la vitesse de rotation et d'avance.
 Les embouts à hélice variable permettent d'avoir un meilleur contrôle des vibrations par rapport aux embouts standard. En revanche, si la rigidité de la machine ou l'installation de la pièce est médiocre, des vibrations ou un bruit anormal peuvent se produire. Dans ce cas, il convient de réduire proportionnellement la vitesse de rotation et d'avance ou de régler une plus faible profondeur de coupe.

iMX-C6HV-C

EMBOUT TORIQUE, 6 DENTS À HÉLICE VARIABLE, AVEC TROU D'ARROSAGE



±0.020

DC<12	12 <dc<12< td=""><td>20<dc<25< td=""></dc<25<></td></dc<12<>	20 <dc<25< td=""></dc<25<>
0	0	0
- 0.030	- 0.040	- 0.050

Référence	EP7020	DC	RE	АРМХ	LH	DCONMS	ZEFP	Туре
IMX10C6HV100R05010C	•	10	0.5	10	16	9.7	6	
IMX10C6HV100R10010C	•	10	1	10	16	9.7	6	
IMX12C6HV120R05012C	•	12	0.5	12	19	11.7	6	
IMX12C6HV120R10012C	•	12	1	12	19	11.7	6	
IMX16C6HV160R10016C	•	16	1	16	24	15.5	6	4
IMX16C6HV160R30016C	•	16	3	16	24	15.5	6	1
IMX20C6HV200R10020C	•	20	1	20	30	19.5	6	
IMX20C6HV200R30020C	•	20	3	20	30	19.5	6	
IMX25C6HV250R10025C	•	25	1	25	37.5	24.5	6	
IMX25C6HV250R30025C	•	25	3	25	37.5	24.5	6	

.,.

35

● : Article stocké. ★ : Article stocké au Japon.

iMX-C6HV-C

CONDITIONS DE COUPE RECOMMANDÉES

CONTOURNAGE

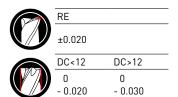
	Matière	DC	Vc	n	fz	Vf	ар	ae
		10	200	6400	0.07	2700	10	1.0
	Acier pré-traité,	12	200	5300	0.085	2700	12	1.2
Р	acier carbone, acier allié,	16	200	4000	0.088	2100	16	1.6
	alliage acier outil	20	200	3200	0.1	1900	20	2.0
		25	200	2500	0.1	1500	25	2.5
		10	150	4800	0.07	2000	10	1.0
		12	150	4000	0.085	2000	12	1.2
М	Acier inoxydable austénitique et ferritique	16	150	3000	0.088	1600	16	1.6
		20	150	2400	0.1	1400	20	2.0
		25	150	1900	0.1	1100	25	2.5
		10	40	1300	0.033	260	10	0.5
		12	40	1100	0.035	230	12	0.6
S	Alliages réfractaires	16	40	800	0.038	180	16	0.8
		20	40	640	0.04	150	20	1.0
		25	40	510	0.04	120	25	1.3
		10	100	3200	0.07	1300	10	1.0
М	Acier inoxydable type PH,	12	100	2700	0.085	1400	12	1.2
	alliage de chrome cobalt	16	100	2000	0.088	1100	16	1.6
_	Alliage de titane	20	100	1600	0.1	1000	20	2.0
S		25	100	1300	0.1	800	25	2.5

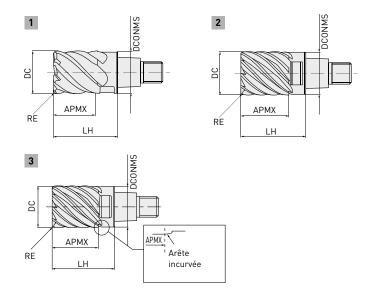
^{1.} L'utilisation d'une huile de coupe soluble permet un usinage efficace de l'acier inoxydable, des alliages de titane et des alliages réfractaires

^{2.} Si la profondeur de coupe est faible, il est possible d'augmenter la vitesse de rotation et d'avance.

^{3.} Les embouts à hélice variable permettent d'avoir un meilleur contrôle des vibrations par rapport aux embouts standards. En revanche, si la rigidité de la machine ou l'installation de la pièce est médiocre, des vibrations ou un bruit anormal peuvent se produire. Dans ce cas, il convient de réduire proportionnellement la vitesse de rotation et d'avance ou de régler une plus faible profondeur de coupe.

iMX-C6HV/C10HV/C12HV (43.5°)





EMBOUT TORIQUE, MULTI-DENTS, **HÉLICES VARIABLES**

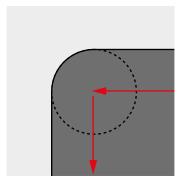
Référence	EP7020	DC	RE	АРМХ	LH	DCONMS	ZEFP	Туре
IMX10C6HV100R05010	•	10	0.5	10.5	16	9.7	6	1
IMX10C6HV100R10010	•	10	1	10.5	16	9.7	6	1
IMX12C6HV120R10012	•	12	1	12.5	19	11.7	6	1
IMX16C10HV160R10016	•	16	1	16.5	24	15.5	10	2
IMX20C12HV200R10020	•	20	1	20	30	19.5	12	3
IMX25C12HV250R10025	•	25	1	25	37.5	24.5	12	3
								4./4

38 (Vc)

37

• : Article stocké. ★ : Article stocké au Japon.

iMX-C6HV/C10HV/C12HV


CONDITIONS DE COUPE RECOMMANDÉES

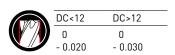
CONTOURNAGE

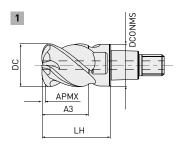
	Matière	DC	ZEFP	Vc	n	fz	Vf	ар	ae
		10	6	200	6400	0.07	2700	10	1
	Acier pré-traité,	12	6	200	5300	0.085	2700	12	1.2
Р	acier carbone, acier allié, alliage acier outil	16	10	200	4000	0.07	2800	16	0.6
		20	12	200	3200	0.08	3100	20	0.8
		25	12	200	2500	0.08	2400	25	1
	Acier inoxydable austénitique et ferritique	10	6	150	4800	0.07	2000	10	1
		12	6	150	4000	0.085	2000	12	1.2
М		16	10	150	3000	0.088	2600	16	0.64
	et lei i i i que	20	12	150	2400	0.1	2900	20	0.8
	-	25	12	150	1900	0.1	2300	25	1
		10	6	40	1300	0.033	260	10	0.5
	-	12	6	40	1100	0.035	230	12	0.6
S	Alliages réfractaires	16	10	40	800	0.038	300	16	0.6
	-	20	12	40	640	0.04	310	20	0.8
		25	12	40	510	0.04	240	25	1
		10	6	100	3200	0.07	1300	10	1
М	Acier inoxydable type PH,	12	6	100	2700	0.085	1400	12	1.2
	alliage de chrome cobalt	16	10	100	2000	0.07	1400	16	0.6
S	Alliage de titane	20	12	100	1600	0.08	1500	20	0.8
5	-	25	12	100	1300	0.08	1200	25	1

- 1. L'utilisation du liquide de coupe soluble permet un usinage efficace de l'acier inoxydable, des alliages de titane et des
- 2. Si la profondeur de coupe est faible, il est possible d'augmenter la vitesse de rotation et d'avance.
- 3. Les embouts à hélice variable permettent d'avoir un meilleur contrôle des vibrations par rapport aux embouts standards. En revanche, si la rigidité de la machine ou l'installation de la pièce est médiocre, des vibrations ou un bruit anormal peuvent se produire. Dans ce cas, il convient de réduire proportionnellement la vitesse de rotation et d'avance ou de régler une plus faible profondeur de coupe.
- Lorsqu'un outil comptant plus de 10 dents est utilisé et que le rayon à usiner est identique au rayon de l'outil, réglez la profondeur de coupe et la vitesse d'avance sur environ la moitié de la valeur indiquée dans le tableau ci-dessus.

iMX-C4FD-C

EMBOUT TORIQUE TYPE DUPLEX, AVEC TROU D'ARROSAGE, 4 DENTS, POUR GRANDE AVANCE

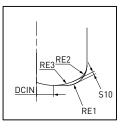




Référence	EP7020	DC	RE1*	APMX	А3	LH	DCONMS	RPMX	ZEFP	Туре
IMX10C4FD10010C	•	10	1.99	0.7	10.5	16	9.7	2.1	4	
IMX12C4FD12012C	•	12	2.1	0.8	12.5	19	11.7	2.8	4	
IMX16C4FD16016C	•	16	2.75	1	16.5	24	15.5	3	4	1
IMX20C4FD20021C	•	20	3.07	1.3	21	30	19.5	3.3	4	
IMX25C4FD25026C	•	25	4.21	1.6	26	37.5	24.5	4.5	4	

1/1

39


1. Les tailles de fixation du porte-outil et de l'embout doivent être identiques (cf. page 6).

2. La fraise torique de type duplex ne convient pas à un usinage de rayon car elle risque de laisser des surfaces non usinées.

REMARQUE POUR LA PROGRAMMATION

D'('		Fraise tori	que duplex	
Référence	S10*	DCIN	RE2	RE3
IMX10C4FD10010C	0.27	3.4	1.5	5
IMX12C4FD12012C	0.33	4.5	1.5	6
IMX16C4FD16016C	0.42	6.2	2	8
IMX20C4FD20021C	0.59	8	2	10
IMX25C4FD25026C	0.67	10	3	12

* S10 = Segment restant

● : Article stocké. ★ : Article stocké au Japon.

^{*} RE1 : Rayon approximatif

iMX-C4FD-C

CONDITIONS DE COUPE RECOMMANDÉES

CONTOURNAGE

Matière	DC	Vc	n	fz	Vf	ар	ae
Asian carbana	10	150	4800	0.4	7700	0.5	6
Acier carbone, — acier allié,	12	150	4000	0.45	7200	0.6	7.2
acier doux,	16	150	3000	0.5	6000	0.8	9.6
Cuivre, alliages de cuivre —	20	150	2400	0.5	4800	1	12
Culvre, attlages de culvre	25	150	1900	0.5	3800	1.25	15
	10	135	4300	0.4	6900	0.5	6
	12	135	3600	0.45	6500	0.6	7.2
Acier pré-traité, alliage acier outil	16	135	2700	0.5	5400	0.8	9.6
attiage aciei outit	20	135	2100	0.5	4200	1	12
	25	135	1700	0.5	3400	1.25	15
	10	40	1300	0.2	1000	0.5	6
	12	40	1100	0.2	880	0.6	7.2
Acier inoxydable austénitique, alliage de chrome cobalt	16	40	800	0.3	960	0.8	9.6
	20	40	640	0.3	770	1	12
	25	40	510	0.3	610	1.25	15
	10	25	800	0.1	320	0.5	6
	12	25	660	0.1	260	0.6	7.2
Alliages réfractaires	16	25	500	0.15	300	0.8	9.6
	20	25	400	0.15	240	1	12
	25	25	320	0.15	190	1.25	15
	10	40	1300	0.2	1000	0.5	6
	12	40	1100	0.2	880	0.6	7.2
Alliage de titane	16	40	800	0.3	960	0.8	9.6
_	20	40	640	0.3	770	1	12
	25	40	510	0.3	610	1.25	15
Acier inoxydable type PH,	10	120	3800	0.3	4600	0.5	6
austénitique et ferritique,	12	120	3200	0.3	3800	0.6	7.2
précipitation d'acier trempé — inoxydable —	16	120	2400	0.4	3800	0.8	9.6
inoxyuable	20	120	1900	0.4	3000	1	12
Acier trempé (< 55 HRC)	25	120	1500	0.4	2400	1.25	15

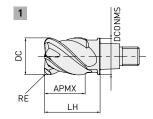
^{1.} L'utilisation du liquide de coupe soluble permet un usinage efficace de l'acier inoxydable, des alliages de titane et des alliages réfractaires.

^{2.} Si la profondeur de coupe est faible, il est possible d'augmenter la vitesse de rotation et d'avance.

^{3.} Les embouts à hélice variable permettent d'avoir un meilleur contrôle des vibrations par rapport aux embouts standard. En revanche, si la rigidité de la machine ou l'installation de la pièce est médiocre, des vibrations ou un bruit anormal peuvent se produire. Dans ce cas, il convient de réduire proportionnellement la vitesse de rotation et d'avance ou de régler une plus faible profondeur de coupe.

^{4.} Pour le ramping, il est recommandé de réduire la vitesse d'avance de 50 %.

iMX-C4FV



EMBOUT TORIQUE POUR USINAGE GRANDE AVANCE, 4 DENTS, HÉLICES VARIABLES

RE<4	RE=4
±0.010	±0.020

DC>12
0
- 0.030

Référence	EP6120	DC	RE	АРМХ	LH	DCONMS	ZEFP	Туре
IMX10C4FV100R20010	•	10	2	10.5	16	9.7	4	
IMX12C4FV120R20012	•	12	2	12.5	19	11.7	4	
IMX16C4FV160R30016	•	16	3	16.5	24	15.5	4	1
IMX20C4FV200R30021	•	20	3	21	30	19.5	4	
IMX25C4FV250R40026	•	25	4	26	37.5	24.5	4	

- 1,

iMX-C4FV

CONDITIONS DE COUPE RECOMMANDÉES

DONNÉES DE COUPE POUR LE FRAISAGE À GRANDE PROFONDEUR DE COUPE

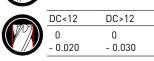
	Matière	DC	RE	Vc	n	fz	Vf	ар	ae
		10	2	90	2900	0.25	2900	1.2	4.5
	Acier carbone,	12	2	90	2400	0.25	2400	1.8	6
	acier allié,	16	3	90	1800	0.25	1800	1.8	7.5
	fonte grise	20	3	90	1400	0.25	1400	1.8	9
P		25	4	90	1100	0.25	1100	2.4	11.5
Ρ.		10	2	75	2400	0.21	2000	1	4.5
	Acier pré-traité, alliage acier outil	12	2	75	2000	0.21	1700	1.4	6
		16	3	75	1500	0.2	1200	1.4	7.5
	attiage actor outil	20	3	75	1200	0.2	1000	1.4	9
		25	4	75	950	0.2	750	1.8	11.5
		10	2	60	1900	0.22	1700	0.7	4.5
		12	2	60	1600	0.22	1400	0.9	6
Н	Acier trempé (45–55 HRC)	16	3	60	1200	0.22	1100	0.9	7.5
		20	3	60	950	0.22	850	0.9	9
		25	4	60	750	0.22	650	1.2	11.5

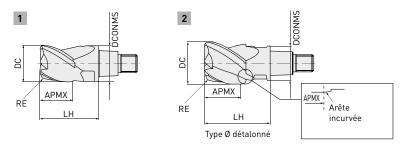
HAUTE VITESSE DE COUPE

	Matière	DC	RE	Vc	n	fz	Vf	ар	ae
		10	2	150	4800	0.51	9800	0.6	4.5
	Acier carbone,	12	2	150	4000	0.56	9000	0.9	6
	acier allié,	16	3	150	3000	0.6	7200	0.9	7.5
	fonte grise	20	3	150	2400	0.6	5800	0.9	9
Р		25	4	150	1900	0.6	4500	1.2	11.5
Р		10	2	125	4000	0.43	6900	0.46	4.5
		12	2	125	3300	0.48	6400	0.7	6
	Acier pré-traité, alliage acier outil	16	3	125	2500	0.53	5300	0.7	7.5
	attiage delet outit	20	3	125	2000	0.37	3000	0.7	9
		25	4	125	1600	0.39	2500	0.9	11.5
		10	2	100	3200	0.43	5500	0.36	4.5
		12	2	100	2700	0.47	5100	0.45	6
Н	Acier trempé (45–55 HRC)	16	3	100	2000	0.54	4300	0.45	7.5
		20	3	100	1600	0.39	2500	0.45	9
		25	4	100	1300	0.39	2000	0.6	11.5

- 1. Si la profondeur de coupe est faible, il est possible d'augmenter la vitesse de rotation et d'avance.
- 2. Pour une bonne évacuation des copeaux, il est recommandé d'utiliser l'air comprimé ou le brouillard d'huile.
- 3. Pour le fraisage de profils, par exemple de moules, les conditions d'enlèvement des copeaux peuvent considérablement varier en fonction de la géométrie de la pièces, des méthodes d'usinage et de la profondeur de coupe. Pour l'usinage de rayons de sortie d'une pièce, il faut réduire l'avance.
- 4. Les embouts à hélice variable permettent d'avoir un meilleur contrôle des vibrations par rapport aux embouts standard. En revanche, si la rigidité de la mac ne ou l'installation de la pièce est médiocre, des vibrations ou un bruit anormal peuvent se produire. Dans ce cas, il convient de réduire proportionnellement la vitesse de rotation et d'avance ou de régler une plus faible profondeur de coupe.

iMX-C3A





EMBOUT TORIQUE, 3 DENTS, **POUR ALLIAGE D'ALUMINIUM**

Référence	ET2020	DC	RE	APMX	LH	DCONMS	ZEFP	Туре
IMX10C3A100R10008	ш	10	1	8.5	16	9.7	3	1
IMX10C3A100R25008	•	10	2.5	8.5	16	9.7	3	1
IMX12C3A120R10009	•	12	1	9.6	19	11.7	3	2
IMX12C3A120R32009	•	12	3.2	9.6	19	11.7	3	2
IMX12C3A120R10010	•	12	1	10.1	19	11.7	3	1
IMX12C3A140R10011	•	14	1	11.7	22.5	11.7	3	2
IMX16C3A160R10012	•	16	1	12.8	24	15.5	3	2
IMX16C3A160R32012	•	16	3.2	12.8	24	15.5	3	2
IMX16C3A180R32014	•	18	3.2	14.9	27	15.5	3	2
IMX20C3A200R10016	•	20	1	16	30	19.5	3	2
IMX20C3A200R32016	•	20	3.2	16	30	19.5	3	2
IMX20C3A220R32018	•	22	3.2	18.6	33	19.5	3	2
IMX25C3A250R10020	•	25	1	20	37.5	24.5	3	1
IMX25C3A250R32020	•	25	3.2	20	37.5	24.5	3	2
IMX25C3A250R50020	•	25	5	20	37.5	24.5	3	2
IMX25C3A280R32023	•	28	3.2	23.4	41.5	24.5	3	2

44 Vc

1/1

• : Article stocké. ★ : Article stocké au Japon. 43

iMX-C3A

CONDITIONS DE COUPE RECOMMANDÉES

CONTOURNAGE

	Matière	DC	Vc	n	fz	Vf	ар	ae
		10	500	16000	0.117	5600	8	3
		12	500	13000	0.118	4600	9.6	3.6
Ν	Alliage d'aluminium	16	500	10000	0.153	4600	12.8	4.8
		20	500	8000	0.175	4200	16	6
		25	500	6000	0.211	3800	20	7.5

1/1

RAINURAGE

Matière	DC	Vc	n	fz	Vf	ар
	10	500	16000	0.068	3300	5
	12	500	13000	0.072	2800	6
N Alliage d'aluminium	16	500	10000	0.093	2800	8
	20	500	8000	0.108	2600	10
	25	500	6000	0.127	2300	12.5

iMX-C3A

TRÉFLAGE

Matière	DC	Vc	n	fz	Vf	ар	AZ
	10	300	9600	0.1	960	5	2.5
	12	300	8000	0.1	800	6	2.5
N Alliage d'aluminium	16	300	6000	0.1	600	8	2.5
	20	300	4800	0.1	480	10	2.5
	25	300	3800	0.1	380	12.5	2.5

1/1

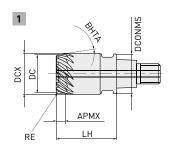
CONTOURNAGE

	Matière	L/D	DC	Vc	n	fz	Vf	ар	ae
			12	500	13000	0.117	4600	9.6	2.4
			14	500	11000	0.118	3900	11.2	2.8
		≤ 3	18	500	8800	0.153	4000	14.4	3.6
			22	500	7200	0.175	3800	17.6	4.4
			28	500	5700	0.211	3600	22.4	5.6
			12	300	8000	0.09	2200	9.6	1.0
		5	14	300	6800	0.09	1800	11.2	1.1
Ν	Alliage d'aluminium		18	300	5300	0.12	1900	14.4	1.4
			22	300	4300	0.14	1800	17.6	1.8
			28	300	3400	0.17	1700	22.4	2.2
			12	200	5300	0.08	1300	9.6	0.5
			14	200	4500	0.08	1100	11.2	0.6
		7	18	200	3500	0.11	1200	14.4	0.7
			22	200	2900	0.12	1000	17.6	0.9
			28	200	2300	0.15	1000	22.4	1.1

^{1.} L'utilisation d'un liquide de coupe soluble est recommandée.

Si la rigidité de la machine ou de la pièce est médiocre, des vibrations peuvent se produire.
 Dans ce cas, il convient de réduire proportionnellement la vitesse de rotation et d'avance ou de régler une plus faible profondeur de coupe.

iMX-C8T/C10T/C12T/C15T @ @ 350 @


EMBOUT TORIQUE, MULTI-DENTS, **AVEC TROU D'ARROSAGE AU CENTRE**

Référence	EP7020	DC	RE	APMX	DCX	LH	DCONMS	ВНТА1	ZEFP	Туре
IMX10C8T080R05T080C	•	8	0.5	7.12	10	16.0	9.7	8°	8	
IMX10C8T080R10T080C	•	8	1	7.12	10	16.0	9.7	8°	8	•
IMX12C10T100R05T080C	•	10	0.5	7.12	12	19.0	11.7	8°	10	
IMX12C10T100R10T080C	•	10	1	7.12	12	19.0	11.7	8°	10	•
IMX16C15T150R05T080C	•	15	0.5	3.56	16	24.0	15.5	8°	15	1
IMX16C15T150R10T080C	•	15	1	3.56	16	24.0	15.5	8°	15	. 1
IMX16C12T150R20T080C	•	15	2	3.56	16	24.0	15.5	8°	12	
IMX20C15T190R05T080C	•	19	0.5	3.56	20	30.0	19.5	8°	15	•
IMX20C15T190R10T080C	•	19	1	3.56	20	30.0	19.5	8°	15	
IMX20C12T190R20T080C	•	19	2	3.56	20	30.0	19.5	8°	12	•

iMX-C8T/C10T/C12T/C15T

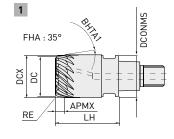
CONDITIONS DE COUPE RECOMMANDÉES

CONTOURNAGE

	Matière	DC	ZEFP	Vc	n	fz	Vf	ар	ae
		8	8	300	12000	0.10	9600	0.3	1.2
		10	10	300	9500	0.10	9500	0.3	1.5
	Acier inoxydable type PH,	15	12	300	6400	0.12	9200	0.3	2.2
М	lliage de chrome cobalt	15	15	300	6400	0.10	9600	0.3	2.2
		19	12	300	5000	0.12	7200	0.3	2.8
		19	15	300	5000	0.10	7500	0.3	2.8
		8	8	60	2400	0.08	1500	0.3	0.8
		10	10	60	1900	0.08	1500	0.3	1.0
_	AII:	15	12	60	1300	0.10	1600	0.3	1.5
S	Alliages réfractaires	15	15	60	1300	0.08	1600	0.3	1.5
		19	12	60	1000	0.10	1200	0.3	1.9
		19	15	60	1000	0.08	1200	0.3	1.9
		8	8	200	8000	0.10	6400	0.3	1.2
М	Acier inoxydable austénitique	10	10	200	6400	0.10	6400	0.3	1.5
	et ferritique	15	12	200	4200	0.12	6000	0.3	2.2
		15	15	200	4200	0.10	6300	0.3	2.2
S	Alliage de titane	19	12	200	3400	0.12	4900	0.3	2.8
	_	19	15	200	3400	0.10	5100	0.3	2.8

- 1. L'utilisation d'un liquide de coupe soluble est recommandée.
- Si la rigidité de la machine ou de la pièce est médiocre, des vibrations peuvent se produire.
 Dans ce cas, il convient de réduire proportionnellement la vitesse de rotation et d'avance ou de régler une plus faible profondeur de coupe.

iMX-C8T-E/C10T-E/ C12T-E/C15T-E



EMBOUT TORIQUE, MULTI-DENTS, **AVEC DEUX TROUS D'ARROSAGE**

RE
±0.015

EP7020	DC	RE	APMX	DCX	LH	DCONMS	ВНТА1	ZEFP	Туре
•	8	1	7.12	10	13	9.7	8°	8	
•	10	1	7.12	12	19	11.7	8°	10	
•	15	1	3.56	16	21	15.5	8°	15	1
•	19	1	3.56	20	27	19.5	8°	15	
•	19	2	3.56	20	27	19.5	8°	12	
	_	● 8 ● 10 ● 15 ● 19	8 1 10 1 15 1 19 1	● 8 1 7.12 ● 10 1 7.12 ● 15 1 3.56 ● 19 1 3.56	● 8 1 7.12 10 ● 10 1 7.12 12 ● 15 1 3.56 16 ● 19 1 3.56 20	♣ 8 1 7.12 10 13 ♠ 10 1 7.12 12 19 ♠ 15 1 3.56 16 21 ♠ 19 1 3.56 20 27	■ 8 1 7.12 10 13 9.7 ■ 10 1 7.12 12 19 11.7 ■ 15 1 3.56 16 21 15.5 ■ 19 1 3.56 20 27 19.5	♣ 8 1 7.12 10 13 9.7 8° ♠ 10 1 7.12 12 19 11.7 8° ♠ 15 1 3.56 16 21 15.5 8° ♠ 19 1 3.56 20 27 19.5 8°	6 8 1 7.12 10 13 9.7 8° 8 ● 10 1 7.12 12 19 11.7 8° 10 ● 15 1 3.56 16 21 15.5 8° 15 ● 19 1 3.56 20 27 19.5 8° 15

iMX-C8T-E/C10T-E/ C12T-E/C15T-E

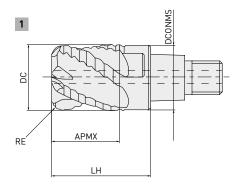
CONDITIONS DE COUPE RECOMMANDÉES

CONTOURNAGE

	Matière	DC	ZEFP	Vc	n	fz	Vf	ар	ae
		8	8	300	12000	0.10	9600	0.3	1.2
	Aciers inoxydables	10	10	300	9500	0.10	9500	0.3	1.5
М	austénitiques, ferritiques et	15	15	300	6400	0.10	9600	0.3	2.2
	martensitiques	19	12	300	5000	0.12	7200	0.3	2.8
		19	15	300	5000	0.10	7500	0.3	2.8
		8	8	60	2400	0.08	1500	0.3	0.8
		10	10	60	1900	0.08	1500	0.3	1.0
S	Alliages réfractaires	15	15	60	1300	0.08	1600	0.3	1.5
		19	12	60	1000	0.10	1200	0.3	1.9
		19	15	60	1000	0.08	1200	0.3	1.9
		8	8	200	8000	0.10	6400	0.3	1.2
М	Acier inoxydable type PH,	10	10	200	6400	0.10	6400	0.3	1.5
		15	15	200	4200	0.10	6300	0.3	2.2
S	- Alliage de titane	19	15	200	3400	0.12	4900	0.3	2.8
_		19	15	200	3400	0.10	5100	0.3	2.8

- 1. L'utilisation d'un liquide de coupe soluble est recommandée.
- Si la rigidité de la machine ou de la pièce est médiocre, des vibrations peuvent se produire.
 Dans ce cas, il convient de réduire proportionnellement la vitesse de rotation et d'avance ou de régler une plus faible profondeur de coupe.

iMX-RC4F-C


EMBOUT À PROFIL D'ÉBAUCHE, TROU D'ARROSAGE, 4 DENTS

Référence	EP7020	АРМХ	DC	DCONMS	RE	LH	ZEFP	Туре
IMX10RC4F100R05010C	•	10.5	10	9.7	0.5	16	4	
IMX10RC4F100R10010C	•	10.5	10	9.7	1	16	4	-
IMX12RC4F120R05012C	•	12.5	12	11.7	0.5	19	4	
IMX12RC4F120R10012C	•	12.5	12	11.7	1	19	4	-
IMX12RC4F120R15012C	•	12.5	12	11.7	1.5	19	4	
IMX12RC4F120R20012C	•	12.5	12	11.7	2	19	4	-
IMX16RC4F160R05016C	•	16.5	16	15.5	0.5	24	4	
IMX16RC4F160R10016C	•	16.5	16	15.5	1	24	4	1
IMX16RC4F160R15016C	•	16.5	16	15.5	1.5	24	4	
IMX16RC4F160R20016C	•	16.5	16	15.5	2	24	4	-
IMX16RC4F160R30016C	•	16.5	16	15.5	3	24	4	
IMX20RC4F200R05021C	•	21	20	19.5	0.5	30	4	-
IMX20RC4F200R10021C	•	21	20	19.5	1	30	4	
IMX20RC4F200R20021C	•	21	20	19.5	2	30	4	-
IMX20RC4F200R30021C	•	21	20	19.5	3	30	4	

ı

iMX-RC4F-C

CONDITIONS DE COUPE RECOMMANDÉES

DRESSAGE / CONTOURNAGE

	Material	DC	Vc	n	fz	ар	ae
		10	150	4800	860	8	4
Р	Acier carbone, acier allié, —	12	150	4000	800	9.6	4.8
Р	acier doux	16	150	3000	600	12.8	6.4
	_	20	150	2400	530	16	8
М	Acier inoxydable austénitique —	10	70	2000	320	8	4
IVI	Acier inoxydable austenitique et ferritique	12	70	1900	340	9.6	4.8
_	A111: 1 125	16	70	1400	280	12.8	6.4
S	Alliage de titane —	20	70	1100	220	16	8
		10	60	1900	230	8	4
		12	60	1600	230	9.6	4.8
М	Acier inoxydable type PH —	16	60	1200	200	12.8	6.4
	_	20	60	950	180	16	8

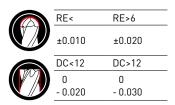
1/1

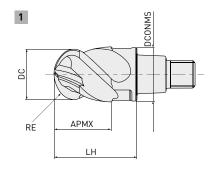
RAINURAGE

	Material	DC	Vc	n	fz	ар
		10	100	3200	510	5
Р	Acier carbone, acier allié, –	12	100	2700	490	6
Ρ.	acier doux	16	100	2000	400	8
	Acier inoxydable austénitique et ferritique	20	100	1600	350	10
М		10	60	1900	230	5
IVI		12	60	1600	260	6
_		16	60	1200	220	8
S	Alliage de titane –	20	60	950	170	10
		10	40	1300	100	5
М	Acier inoxydable type PH -	12	40	1100	110	6
IVI	Aciei iiioxyuabie type Pfi	16	40	800	96	8
		20	40	640	90	10

- 1. En cas de vibrations ou de faible raideur de pièce, veuillez réduire les vitesses de rotation et d'avance ainsi que la profondeur de passe.
- 2. Lors de faibles engagements, la vitesse de coupe peut être augmentée.
- 3. Pour l'usinage d'inox et de titane, l'utilisation d'une huile soluble est préconisée.

iMX-B4HV



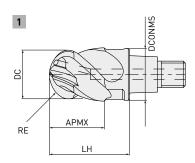


EMBOUT HÉMISPHÉRIQUE, 4 DENTS, HÉLICES VARIABLES

Référence	EP7020	RE	DC	АРМХ	LH	DCONMS	ZEFP	Туре
IMX10B4HV10010	•	5	10	10.5	16	9.7	4	
IMX12B4HV12012	•	6	12	12.5	19	11.7	4	
IMX16B4HV16016	•	8	16	16.5	24	15.5	4	1
IMX20B4HV20021	•	10	20	21	30	19.5	4	
IMX25B4HV25026	•	12.5	25	26	37.5	24.5	4	

iMX-B4HV-E

EMBOUT HÉMISPHÉRIQUE, 4 DENTS, HÉLICES VARIABLES, AVEC TROU D'ARROSAGE

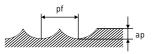


RE<6	RE>6
±0.010	±0.020

C>12
0 0.030

Référence	EP7020	RE	DC	АРМХ	LH	DCONMS	ZEFP	Туре
IMX10B4HV10010E	•	5	10	10.5	16	9.7	4	
IMX12B4HV12012E	•	6	12	12.5	19	11.7	4	
IMX16B4HV16016E	•	8	16	16.5	24	15.5	4	1
IMX20B4HV20021E	•	10	20	21	30	19.5	4	
IMX25B4HV25026E	•	12.5	25	26	37.5	24.5	4	

1,



iMX-B4HV-E


CONDITIONS DE COUPE RECOMMANDÉES

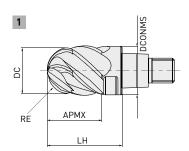
CONTOURNAGE

Matière	DC	RE -	Angle d'inclinaison α < 15°				Angle d'inclinaison α > 15°				- ар	pf
Mattere	20		Vc	n	fz	Vf	Vc	n	fz	Vf	ар	p,
	10	5	300	9600	0.106	4100	200	6400	0.07	1800	1	2.5
Acier carbone, acier allié,	12	6	300	8000	0.125	4000	200	5300	0.085	1800	1.2	3
acier doux,	16	8	300	6000	0.134	3200	200	4000	0.088	1400	1.6	4
Cuivre, alliages de cuivre	20	10	300	4800	0.156	3000	200	3200	0.1	1300	2	5
	25	12.5	300	3800	0.16	2400	200	2500	0.1	1000	2.5	6
	10	5	60	1900	0.055	420	40	1300	0.035	180	0.5	1
	12	6	60	1600	0.055	350	40	1100	0.035	150	0.6	1.2
Alliages réfractaires	16	8	60	1200	0.062	300	40	800	0.04	130	0.8	1.6
	20	10	60	1000	0.062	250	40	640	0.04	100	1	2
	25	12.5	60	760	0.062	190	40	510	0.04	80	1.2	2.5
A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10	5	225	7200	0.105	3000	150	4800	0.067	1300	1	2.5
Acier inoxydable austénitique et ferritique, précipitation	12	6	225	6000	0.125	3000	150	4000	0.08	1300	1.2	3
d'acier trempé inoxydable	16	8	225	4500	0.14	2500	150	3000	0.09	1100	1.6	4
All: d- 4:4	20	10	225	3600	0.16	2300	150	2400	0.105	1000	2	5
Alliage de titane	25	12.5	225	2900	0.16	1900	150	1900	0.105	800	2.5	6

- 1. L'utilisation du liquide de coupe soluble permet un usinage efficace de l'acier inoxydable, des alliages de titane et des alliages réfractaires.
- 2. Si la profondeur de coupe est faible, il est possible d'augmenter la vitesse de rotation et d'avance.
- 3. Les embouts à hélice variable permettent d'avoir un meilleur contrôle des vibrations par rapport aux embouts standard. En revanche, si la rigidité de la machine ou l'installation de la pièce est médiocre, des vibrations ou un bruit anormal peuvent se produire. Dans ce cas, il convient de réduire proportionnellement la vitesse de rotation et d'avance ou de régler une plus faible profondeur de coupe.
- 4. α représente l'angle d'inclinaison de la surface usinée.

iMX-B6HV

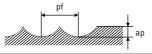
EMBOUT HÉMISPHÉRIQUE, 6 DENTS, HÉLICES VARIABLES



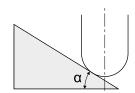
	RE<6	RE>6
)	±0.010	±0.020

DC<12	DC>12	
0	0	
-0.020	-0.030	

EP7020	RE	DC	АРМХ	LH	DCONMS	ZEFP	Туре
•	5	10	10.5	16	9.7	6	
•	6	12	12.5	19	11.7	6	
•	8	16	16.5	24	15.5	6	1
•	10	20	21	30	19.5	6	
•	12.5	25	26	37.5	24.5	6	
	Р7	5 6 8 10	♣ 5 10 ♦ 6 12 ♦ 8 16 ♦ 10 20	♣ 5 10 10.5 ♦ 6 12 12.5 ♦ 8 16 16.5 ♦ 10 20 21	♣ 5 10 10.5 16 ● 6 12 12.5 19 ● 8 16 16.5 24 ● 10 20 21 30	Image: Exercise of the content of	6 5 10 10.5 16 9.7 6 ● 6 12 12.5 19 11.7 6 ● 8 16 16.5 24 15.5 6 ● 10 20 21 30 19.5 6



iMX-B6HV

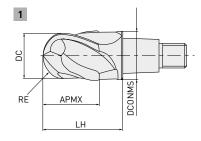

CONDITIONS DE COUPE RECOMMANDÉES

CONTOURNAGE

Matière	DC	RE -	Angle d'inclinaison α<15°				Angle d'inclinaison α > 15°				- ap	pf
matiere	ьс	KE	Vc	n	fz	Vf	Vc	n	fz	Vf	ар	рі
	10	5	300	9600	0.106	6100	200	6400	0.07	2700	0.5	2
Acier carbone, acier allié,	12	6	300	8000	0.125	6000	200	5300	0.085	2700	0.6	2.4
acier doux,	16	8	300	6000	0.134	4800	200	4000	0.088	2100	0.8	3.2
Cuivre, alliages de cuivre	20	10	300	4800	0.156	4500	200	3200	0.1	1900	1	4
	25	12.5	300	3800	0.16	3600	200	2500	0.1	1500	1.2	5
	10	5	60	1900	0.055	630	40	1300	0.035	270	0.5	1
	12	6	60	1600	0.055	520	40	1100	0.035	220	0.6	1.2
S Alliages réfractaires	16	8	60	1200	0.062	450	40	800	0.04	190	0.8	1.6
	20	10	60	1000	0.062	370	40	640	0.04	150	1	2
	25	12.5	60	760	0.062	300	40	510	0.04	120	1.2	2.5
A	10	5	225	7200	0.105	4500	150	4800	0.067	1900	0.5	2
Acier inoxydable austénitique et ferritique, précipitation	12	6	225	6000	0.125	4500	150	4000	0.08	1900	0.6	2.4
d'acier trempé inoxydable	16	8	225	4500	0.14	3700	150	3000	0.09	1600	0.8	3.2
Alliana da kikana	20	10	225	3600	0.16	3400	150	2400	0.105	1500	1	4
S Alliage de titane	25	12.5	225	2900	0.16	2800	150	1900	0.105	1200	1.2	5

- 1. L'utilisation du liquide de coupe soluble permet un usinage efficace de l'acier inoxydable, des alliages de titane et des alliages réfractaires.
- 2. Si la profondeur de coupe est faible, il est possible d'augmenter la vitesse de rotation et d'avance.
- 3. Les embouts à hélice variable permettent d'avoir un meilleur contrôle des vibrations par rapport aux embouts standard. En revanche, si la rigidité de la machine ou l'installation de la pièce est médiocre, des vibrations ou un bruit anormal peuvent se produire. Dans ce cas, il convient de réduire proportionnellement la vitesse de rotation et d'avance ou de régler une plus faible profondeur de coupe.
- 4. α représente l'angle d'inclinaison de la surface usinée.

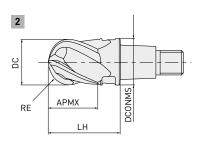
iMX-B2S/iMX-B4S



FRAISE HÉMISPHÉRIQUE, 2 DENTS/4 DENTS, POUR L'ACIER TREMPÉ

Н

iMX-B2S

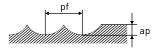


iMX-B4S

Référence	EP8110	RE	DC	АРМХ	LH	DCONMS	ZEFP	Туре
IMX16B2S16016	*	8	16	16	24	15.5	2	1
IMX20B2S20020	*	10	20	20	30	19.5	2	1
IMX16B4S16016	*	8	16	16	24	15.5	4	2
IMX20B4S20020	*	10	20	20	30	19.5	4	2
								1/1

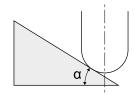
58 (Vc)

57

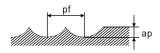

● : Article stocké. ★ : Article stocké au Japon.

iMX-B2S/iMX-B4S

CONDITIONS DE COUPE RECOMMANDÉES


iMX-B2S

	Matière	DC	RE		Angle d'in α<		l		Angle d'ir α>	iclinaison 15°		ар	pf
	riditere	DO INI	ILL.	Vc	n	fz	Vf	Vc	n	fz	Vf	ар	P.
	Aciantrampé (EE /EUDC)	16	8	300	6000	0.14	1700	150	3000	0.08	480	0.3	1.6
Н	Acier trempé (55–65 HRC)	20	10	300	4800	0.14	1300	150	2400	0.08	380	0.3	2


1/1

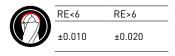
- 1. Si la profondeur de coupe est faible, il est possible d'augmenter la vitesse de rotation et d'avance.
- 2. α représente l'angle d'inclinaison de la surface usinée.

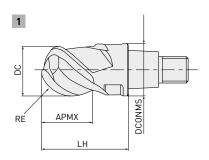
iMX-B4S

Matière	DC	RE	Angle d'inclinaison α < 15°				Angle d'inclinaison α>15°				- ар	pf
Piditore	DO RE	Vc	n	fz	Vf	Vc	n	fz	Vf	ар	יק	
A - : + ((E.E. / E.U.D.C.)	16	8	300	6000	0.07	1700	150	3000	0.06	720	0.3	1.6
Acier trempé (55–65 HRC)	20	10	300	4800	0.07	1300	150	2400	0.06	580	0.3	2

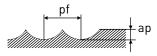
- 1. Si la profondeur de coupe est faible, il est possible d'augmenter la vitesse de rotation et d'avance.
- 2. α représente l'angle d'inclinaison de la surface usinée.

iMX-B3FV




FRAISE HÉMISPHÉRIQUE, POUR L'USINAGE À DÉBIT ÉLEVÉ, 3 DENTS, HÉLICE VARIABLE

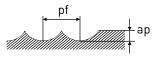
Référence	EP8120	RE	DC	АРМХ	LH	DCONMS	ZEFP	Туре
IMX10B3FV10008	*	5	10	8	16	9.7	3	
IMX12B3FV12009	*	6	12	9.6	19	11.7	3	1
IMX16B3FV16012	*	8	16	12.8	24	15.5	3	I
IMX20B3FV20016	*	10	20	16	30	19.5	3	

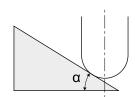


iMX-B3FV

CONDITIONS DE COUPE RECOMMANDÉES

CONTOURNAGE


	Matière	DC	RE		Angle d'ir α<		1		Angle d'ir α>		1		
	Mattere	ьс	KE	Vc	n	fz	Vf	Vc	n	fz	Vf	ар	pf
		10	5	175	5600	0.22	3700	115	3700	0.15	1700	0.7	2.6
	Acier pré-traité,	12	6	175	4600	0.22	3000	115	3100	0.15	1400	1	3.2
Ρ	acier à outils allié	16	8	175	3500	0.22	2300	115	2300	0.15	1000	1.1	3.8
		20	10	175	2800	0.22	1800	115	1800	0.15	810	1.2	4.8
		10	5	150	4800	0.18	2600	100	3200	0.12	1200	0.5	2
	A :	12	6	150	4000	0.18	2200	100	2700	0.12	970	0.7	2.5
Н	Acier trempé (40–55 HRC)	16	8	150	3000	0.18	1600	100	2000	0.12	720	0.9	3.5
		20	10	150	2400	0.18	1300	100	1600	0.12	580	1.1	4.2


1 /1

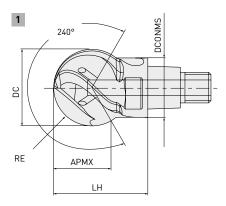
CONTOURNAGE (L/D = 7)

Matière	DC	RE		Angle d'ir α <		1		•	nclinaison 15°		ар	pf
Fiducic	ь	NL.	Vc	n	fz	Vf	Vc	n	fz	Vf	ар	Pi.
	10	5	120	3800	0.2	2300	80	2500	0.13	980	0.5	1.3
Acier pré-traité,	12	6	120	3200	0.2	1900	80	2100	0.13	820	0.7	1.6
acier à outils allié	16	8	120	2400	0.2	1400	80	1600	0.13	620	0.8	1.9
	20	10	120	1900	0.2	1100	80	1300	0.13	510	0.9	2.4
	10	5	100	3200	0.13	1200	65	2100	0.085	540	0.4	1
Asian trampé (/O EE LIDC)	12	6	100	2700	0.13	1100	65	1700	0.085	430	0.6	1.3
Acier trempé (40–55 HRC)	16	8	100	2000	0.13	780	65	1300	0.085	330	0.7	1.8
	20	10	100	1600	0.13	620	65	1000	0.085	260	0.8	2.1

- 1. Si la profondeur de passe est faible, il est possible d'augmenter les vitesses de rotation et d'avance.
- 2. La fraise à hélice et pas variable permet de mieux contrôler les vibrations par rapport à une fraise standard. Cependant, si la raideur de la machine ou du bridage est faible, des vibrations ou un bruit anormal peuvent se produire. Dans ce cas, il convient de réduire proportionnellement les vitesses de rotation et d'avance ou de régler une profondeur de passe plus faible.
- 3. α représente l'angle d'inclinaison par rapport à la surface usinée.

iMX-B4WH-S

FRAISE SPHÉRIQUE À 240°, TROUS D'ARROSAGE, 4 DENTS



Référence	EP7020	АРМХ	DC	DCONMS	RE	LH	ZEFP	Туре
IMX10B4WH12008S	•	9	12	9.7	6	16.5	4	
IMX12B4WH16008S	•	12	16	11.7	8	20.9	4	1
IMX16B4WH20008S	•	15	20	15.5	10	24.7	4	

iMX-B4WH-S

CONDITIONS DE COUPE RECOMMANDÉES

BALAYAGE, L/D = 3

	Material	DC	RE	Vc	n	ft	f	ae
_	Acier carbone, acier allié,	12	6	100	2700	0.090	970	0.45
Р	acier doux	16	8	100	2000	0.100	800	0.60
Ν	Aciers prétraités, Alliage de cuivre	20	10	100	1600	0.100	640	0.75
М	Acier inoxydable austénitique et ferritique	12	6	80	2100	0.075	630	0.45
IVI	, , ,	16	8	80	1600	0.080	510	0.60
S	Alliages de chrome-cobalt, Alliages de titane	20	10	80	1300	0.090	470	0.75
		12	6	30	800	0.040	130	0.36
S	Alliages réfractaires	16	8	30	600	0.045	110	0.48
		20	10	30	480	0.050	96	0.60

1/1

BALAYAGE, L/D = 5

	Material	DC	RE	Vc	n	ft	f	ae
D	Acier carbone, acier allié,	12	6	70	1900	0.070	530	0.30
P	acier doux	16	8	70	1400	0.080	450	0.40
N	Aciers prétraités, Alliage de cuivre	20	10	70	1100	0.080	350	0.50
М	Acier inoxydable austénitique et ferritique	12	6	50	1300	0.050	260	0.30
IVI	· · ·	16	8	50	990	0.060	240	0.40
S	Alliages de chrome-cobalt, Alliages de titane	20	10	50	800	0.070	220	0.50
		12	6	20	530	0.030	64	0.24
S	Alliages réfractaires	16	8	20	400	0.040	64	0.32
		20	10	20	320	0.040	51	0.40

iMX-B4WH-S

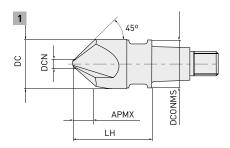
BALAYAGE, L/D = 7

Material	DC	RE	Vc	n	ft	f	ae
Acier carbone, acier allié,	12	6	50	1300	0.030	160	0.15
acier doux	16	8	50	990	0.035	140	0.20
N Aciers prétraités, Alliage de cuivre	20	10	50	800	0.040	130	0.25
Acier inoxydable austénitique et ferritique	12	6	30	800	0.025	80	0.15
	16	8	30	600	0.030	72	0.20
Alliages de chrome-cobalt, Alliages de titane	20	10	30	480	0.035	67	0.25

- 1. En cas de vibrations ou de faible raideur, veuillez réduire les vitesses d'avance et de rotation ainsi que l'engagement.
- 2. En cas de faibles engagements, les vitesses d'avance et de rotation peuvent être augmentées.
- 3. Pour des porte-à faux supérieurs à 5xD, veuillez utiliser un corps détalonné.
- 4. Pour l'usinage d'inox, de titane et de réfractaires, veuillez utiliser une huile soluble.

iMX-CH3L

EMBOUT À CHANFREINER, 3 DENTS



Référence	EP7020	DC	АРМХ	DCN	LH	DCONMS	ZEFP	Туре
IMX10CH3L100A45	•	10	4.2	1.5	16.0	9.7	3	
IMX12CH3L120A45	•	12	5.2	1.5	19.0	11.7	3	1
IMX16CH3L160A45	•	16	7.2	1.5	24.0	15.5	3	I
IMX20CH3L200A45	•	20	9.2	1.5	30.0	19.5	3	

iMX-CH3L

CONDITIONS DE COUPE RECOMMANDÉES

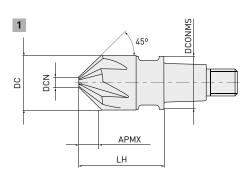
CHANFREIN EN LAMANT

	Matière	DC	ZEFP	Vc	n	fz	Vf	ар	ae
		10	3	40	1300	0.04	160	1.8	1.8
	Acier carbone,	12	3	40	1100	0.04	130	2.2	2.2
	acier allié, fonte grise	16	3	40	800	0.04	96	2.4	2.4
Р	g	20	3	40	640	0.04	77	2.6	2.6
Ρ		10	3	40	1300	0.03	120	1.8	1.8
	Alliage acier outil,	12	3	40	1100	0.03	99	2.2	2.2
	acier pré-traité	16	3	40	800	0.03	72	2.4	2.4
	-	20	3	40	640	0.03	58	2.6	2.6
		10	3	30	950	0.03	86	1.8	1.8
М	Acier inoxydable austénitique,	12	3	30	800	0.03	72	2.2	2.2
M	acier allié	16	3	30	600	0.03	54	2.4	2.4
	-	20	3	30	480	0.03	43	2.6	2.6
		10	3	30	950	0.04	110	1.8	1.8
_	- All: - '(12	3	30	800	0.04	96	2.2	2.2
S	Alliages réfractaires	16	3	30	600	0.04	72	2.4	2.4
		20	3	30	480	0.04	58	2.6	2.6
		10	3	30	950	0.02	57	1.8	1.8
	A-i	12	3	30	800	0.02	48	2.2	2.2
Н	Acier trempé (45–55 HRC)	16	3	30	600	0.02	36	2.4	2.4
		20	3	30	480	0.02	29	2.6	2.6

- 1. L'utilisation d'un liquide de coupe soluble est recommandée.
- Si la rigidité de la machine ou de la pièce est médiocre, des vibrations peuvent se produire.
 Dans ce cas, il convient de réduire proportionnellement la vitesse de rotation et d'avance.

iMX-CH6V

EMBOUT À CHANFREINER, 6 DENTS



Référence	EP7020	DC	АРМХ	DCN	LH	DCONMS	ZEFP	Туре
IMX12CH6V120A45	•	12	4.5	3.0	19.0	11.7	6	
IMX16CH6V160A45	•	16	6.5	3.0	24.0	15.5	6	1
IMX20CH6V200A45	•	20	8.5	3.0	30.0	19.5	6	

iMX-CH6V

CONDITIONS DE COUPE RECOMMANDÉES

CHANFREIN CONTOURNANT

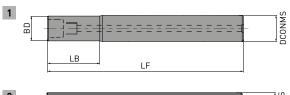
	Matière	DC	ZEFP	Vc	n	fz	Vf	ар	ae
	Acier carbone,	12	6	100	2700	0.05	810	2.4	2.4
	acier allié,	16	6	100	2000	0.05	600	2.7	2.7
Р	fonte grise	20	6	100	1600	0.05	480	3.2	3.2
Ρ		12	6	70	1900	0.05	510	2.4	2.4
	Alliage acier outil, acier pré-traité	16	6	70	1400	0.05	380	2.7	2.7
	aciei pre-traite =	20	6	70	1100	0.05	300	3.2	3.2
		12	6	60	1600	0.04	380	2.4	2.4
М	Acier inoxydable austénitique, = acier allié = -	16	6	60	1200	0.04	290	2.7	2.7
	aciei attie	20	6	60	950	0.04	230	3.2	3.2
		12	6	50	1300	0.03	230	2.4	2.4
S	Alliages réfractaires	16	6	50	990	0.03	180	2.7	2.7
	_	20	6	50	800	0.03	140	3.2	3.2
		12	6	30	800	0.04	190	2.4	2.4
Н	Acier trempé (45–55 HRC)	16	6	30	600	0.04	140	2.7	2.7
		20	6	30	480	0.04	120	3.2	3.2

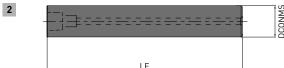
- 1. L'utilisation d'un liquide de coupe soluble est recommandée.
- Si la rigidité de la machine ou de la pièce est médiocre, des vibrations peuvent se produire.
 Dans ce cas, il convient de réduire proportionnellement la vitesse de rotation et d'avance.

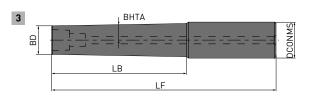
PORTE-OUTIL CARBURE

DÉTALONNÉ CYLINDRIQUE

RECTILIGNE



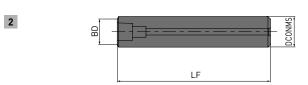

DÉTALONNÉ CONIQUE



DCONMS=10	12 <dconms<16< th=""><th>20<dconms<25< th=""></dconms<25<></th></dconms<16<>	20 <dconms<25< th=""></dconms<25<>
0	0	0
- 0.009	- 0.011	- 0.013

Référence	Stock	BHTA1	LB	BD	LF	DCONMS	Туре
IMX10-U10N014L070C	•		14	9.7	70	10	1
IMX10-S10L090C	•	_	_	_	90	10	2
IMX10-U10N034L090C	•	_	34	9.7	90	10	1
IMX10-S10L110C	•	_	_	_	110	10	2
IMX10-U10N054L110C	•	_	54	9.7	110	10	1
IMX10-A12N054L110C	•	1	54	9.7	110	12	3
IMX12-U12N017L080C	•	_	17	11.7	80	12	1
IMX12-S12L100C	•	_	_	_	100	12	2
IMX12-U12N041L100C	•	_	41	11.7	100	12	1
IMX12-S12L130C	•	_	_	_	130	12	2
IMX12-U12N065L130C	•	_	65	11.7	130	12	1
IMX12-A16N065L130C	•	1	65	11.7	130	16	3
IMX16-U16N024L080C	•	_	24	15.5	80	16	1
IMX16-S16L110C	•	_	_	_	110	16	2
IMX16-U16N056L110C	•	_	56	15.5	110	16	1
IMX16-S16L150C	•	_	_	_	150	16	2
IMX16-U16N088L150C	•	_	88	15.5	150	16	1
IMX16-A20N088L150C	•	1	88	15.5	150	20	3
IMX20-U20N030L090C	•	_	30	19.5	90	20	1
IMX20-S20L130C	•	_	_	_	130	20	2
IMX20-U20N070L130C	•	_	70	19.5	130	20	1
IMX20-S20L180C	•	_	_	_	180	20	2
IMX20-U20N110L180C	•	_	110	19.5	180	20	1
IMX20-A25N110L180C	•	1	110	19.5	180	25	3
IMX25-U25N037L110C	•	_	37.5	24.5	110	25	1
IMX25-S25L160C	•	_	_	_	160	25	2
IMX25-U25N087L160C	•	_	87.5	24.5	160	25	1
IMX25-S25L210C	•	_	_	_	210	25	2

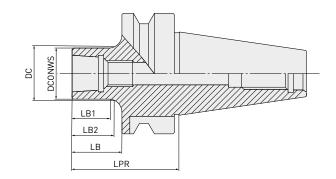
PORTE-OUTIL EN ACIER


DÉTALONNÉ CYLINDRIQUE

LB LF

RECTILIGNE

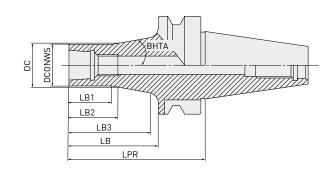
DCONMS=10	12 <dc0nms<16< th=""><th>20<dc0nms<25< th=""><th>DCONMS=32</th></dc0nms<25<></th></dc0nms<16<>	20 <dc0nms<25< th=""><th>DCONMS=32</th></dc0nms<25<>	DCONMS=32
0	0	0	0
- 0.009	- 0.011	- 0.013	- 0.160


Référence	Stock	LB	BD	LF	DCON	Туре
IMX10-U10N009L070S	•	9	9.7	70	10	1
IMX10-G12L060S	•	_	_	60	12	2
IMX12-U12N011L080S	•	11	11.7	80	12	1
IMX12-G16L070S	•	_	_	70	16	2
IMX16-U16N016L080S	•	16	15.5	80	16	1
IMX16-G20L070S	•	_	_	70	20	2
IMX20-U20N020L090S	•	20	19.5	90	20	1
IMX20-G25L080S	•	_	_	80	25	2
IMX25-U25N025L110S	•	25	24.5	110	25	1
IMX25-G32L100S	•	_	_	100	32	2

69

ATTACHEMENT MONOBLOC BT30

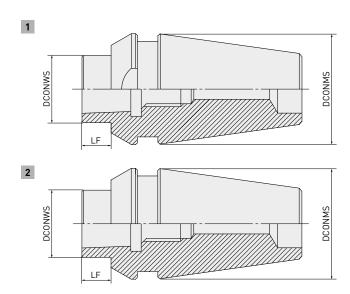
TYPE COURT



Référence	Stock	DC	DCONWS	LPR	LB	LB1	LB2	WT	Tête adaptée
IMX16-S16GL38-BT30	•	16	15.5	38	16	11	12.5	0.39	IMX16[]
IMX16-S28GL50-BT30	•	16	15.5	50	28	23	24.5	0.41	IMX16[]
IMX20-S19GL41-BT30	•	20	19.5	41	19	14	15.5	0.41	IMX20[]
IMX20-S33GL55-BT30	•	20	19.5	55	33	28	29.5	0.42	IMX20[]
IMX25-S25GL47-BT30	•	25	24.5	47	25	20	21.5	0.45	IMX25[]
IMX25-S43GL65-BT30	•	25	24.5	65	43	38	39.5	0.50	IMX25[]

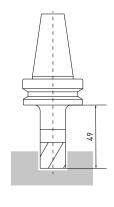
/1

TYPE LONG CONIQUE


Référence	Stock	DC	DCONWS	LPR	LB	LB1	LB2	LB3	BHTA1	WT	Tête adaptée
IMX16-A33GL55-BT30	•	16	15.5	55	33	16	16.7	29.2	15°	0.43	IMX16[]
IMX20-A42GL64-BT30	•	20	19.5	64	42	20	21.4	37.8	10°	0.48	IMX20[]
IMX25-A53GL75-BT30	•	25	24.5	75	53	25	26.7	48.7	8°	0.57	IMX25[]
											1/1

- 1. La taille de fixation du porte-outil et de l'embout doivent être identiques.
- 2. Veuillez utiliser une clef spéciale qui correspond à la taille de l'embout (vendue séparément).
- 3. Recommandé pour l'utilisation avec des centres d'usinage équipés de broche à grande puissance.

CÔNES ER

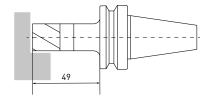

Référence	Stock	DCONWS	DCONMS	LF	Dimension de la pince	Tête adaptée	Туре
IMX10-S04-ER16	*	9.7	16	4	ER16	IMX10[]	1
IMX10-S04-ER20	*	9.7	20	4	ER20	IMX10[]	2
IMX10-S04-ER25	*	9.7	25	4	ER25	IMX10[]	2
IMX10-S04-ER32	*	9.7	32	4	ER32	IMX10[]	2
IMX12-S05-ER16	*	11.7	16	5	ER16	IMX12[]	1
IMX12-S05-ER20	*	11.7	20	5	ER20	IMX12[]	2
IMX12-S05-ER25	*	11.7	25	5	ER25	IMX12[]	2
IMX12-S05-ER32	*	11.7	32	5	ER32	IMX12[]	2
IMX16-S08-ER25	*	15.5	25	8	ER25	IMX16[]	2
IMX16-S08-ER32	*	15.5	32	8	ER32	IMX16[]	2
IMX20-S10-ER32	*	19.5	32	10	ER32	IMX20[]	2
IMX25-S12-ER32	*	24.5	32	12.5	ER32	IMX25[]	2

- 1. La taille de fixation du porte-outil et de l'embout doivent être identiques.
- Veuillez utiliser une clef spéciale qui correspond à la taille de l'embout (vendue séparément).
 Recommandé pour l'utilisation avec des centres d'usinage équipés de broche à grande puissance.

CENTRE D'USINAGE VERTICAL : BROTHER INDUSTRIES, LTD. S700XD1

Usinage à rendement élevé avec un débit de copeaux de 620 cm³/min.

Material	Alliage d'aluminium
Outil	IMX20S3A20016 ET2020 droite, 3 dents
Embout	IMX20-S19GL41-BT30
n (min ⁻¹)	5971
Vc (m/min)	375
Vf (mm/min)	2389
ap (mm)	13
Débit de copeaux (cm³/min)	621
Mode de coupe	Huile soluble (externe)


Rotation de broche max. 10000 tr/min, puissance de broche 26,2 kW, couple 92 Nm

CENTRE D'USINAGE HORIZONTAL : ENSHU, LTD. SH350

Le volume de copeaux était six fois plus élevé qu'avec les conditions standard recommandées.

Material	XC50
Outil	IMX20R4F20021 EP7020 Profil d'ébauche, 4 dents
Embout	IMX20-S19GL41-BT30
n (min ⁻¹)	3997 (2400)
Vc (m/min)	251 (150)
Vf (mm/min)	1599 (480)
ap (mm)	12
ae (mm)	20
Débit de copeaux (cm³/min)	384
Mode de coupe	Soufflage d'air
/ \	.,

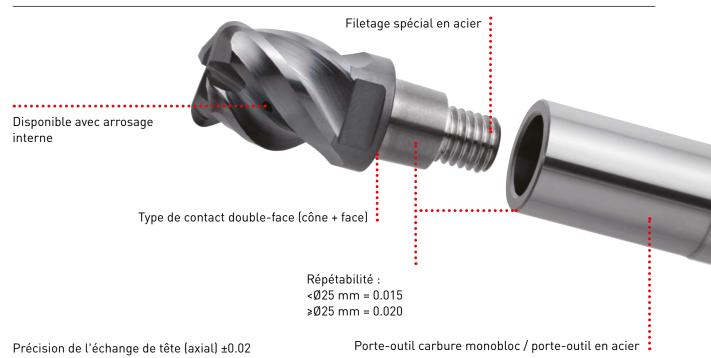
⁽⁾ Conditions de coupe recommandées

Rotation de broche max. 12000 tr/min, puissance de broche 31 kW, couple 31 Nm

PORTE-OUTIL CARBURE - PIÈCES DÉTACHÉES

Référence du Porte-outil	Tête adaptée		
		Clé	Lubrifiant antigrippant
IMX10-U10N014L070C			
IMX10-S10L090C			
IMX10-U10N034L090C	IMX10 []	IMX10-WR	
IMX10-S10L110C		INIXTO WIX	
IMX10-U10N054L110C			
IMX10-A12N054L110C			
IMX12-U12N017L080C			
IMX12-S12L100C			
IMX12-U12N041L100C	IMX12 []	IMX12-WR	
IMX12-S12L130C		IIVIA I Z-VV K	
IMX12-U12N065L130C			
IMX12-A16N065L130C			
IMX16-U16N024L080C			
IMX16-S16L110C			MK1KS
IMX16-U16N056L110C	IMX16 []	IMX16-WR	
IMX16-S16L150C			
IMX16-U16N088L150C			
IMX16-A20N088L150C			
IMX20-U20N030L090C			
IMX20-S20L130C			
IMX20-U20N070L130C	IMX20 []	IMX20-WR	
IMX20-S20L180C		IIVIAZU-VVI	
IMX20-U20N110L180C			
IMX20-A25N110L180C			_
IMX25-U25N037L110C			
IMX25-S25L160C	IMX25 []	IMX25-WR	
IMX25-U25N087L160C	IMXZ5;;	MAA-CZVIAII	
IMX25-S25L210C			

PIÈCES VENDUES SÉPARÉMENT

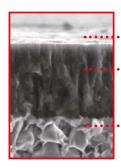

Référence du Porte-outil	
	Clé
IMX10	IMX10-WR
IMX12	IMX12-WR
IMX16	IMX16-WR
IMX20	IMX20-WR
IMX25	IMX25-WR

● : Article stocké. ★ : Article stocké au Japon.

PORTE-OUTIL EN ACIER - PIÈCES DÉTACHÉES

Référence du Porte-outil	Tête adaptée		
		Clé	Lubrifiant antigrippant
IMX10-U10N009L070S	IMX10 []	IMV10 IMD	
IMX10-G12L060S	IMX1U::	IMX10-WR	
IMX12-U12N011L080S	IMX12 []	IMV12 IMP	
IMX12-G16L070S	IMX12!!	IMX12-WR	
IMX12-G16L070S		IMV47 M/D	
IMX16-U16N016L080S	IMX16 []	IMX16-WR	MK1KS
IMX20-U20N020L090S		IMVOO WD	
IMX20-G25L080S	IMX20 []	IMX20-WR	
IMX25-U25N025L110S		IMVOE WD	<u> </u>
IMX25-G32L100S	IMX25 []	IMX25-WR	

FRAISES À EMBOUT INTERCHANGEABLE


CARACTÉRISTIQUES

La gamme iMX est un système de fraise révolutionnaire qui offre efficacité, haute précision et rigidité en associant les avantages du carbure monobloc et des fraises à plaquettes.

Fiabilité et raideur proches d'une fraise monobloc grâce aux faces de serrage entièrement carbure.

Parfaite pour un stock réduit sur une large gamme d'applications grâce à l'embout interchangeable.

NUANCES TRÈS POLYVALENTES

- Surface lisse « ZERO-µ »
- Nouveau revêtement de type (Al, Cr)N
- Carbure à micrograins

: ET2020 (non revêtue)

Convient pour l'usinage d'aluminium.

: EP7020

Convient pour les inox, titane et réfractaires.

EP6120

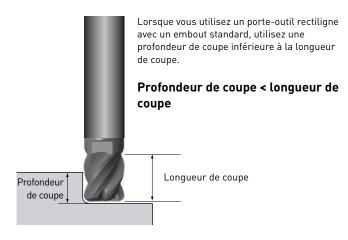
Convient pour l'usinage grande avance de l'acier.

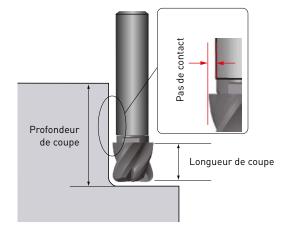
Forte résistance au collage

- Température d'oxydation élevée
- Meilleure résistance à l'usure
- Forte adhésion du revêtement

EP8110 / EP8120

La combinaison du nouveau revêtement AlCrSiN, qui se distingue par une température d'oxydation élevée et un haut pouvoir lubrifiant, et du revêtement AlTiSiN, qui présente une meilleure résistance à l'usure et une forte adhésion, permet d'augmenter la durée de vie dans l'acier trempé.

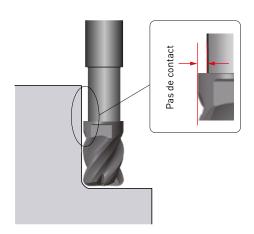

COMMENT SÉLECTIONNER LES PORTE-OUTILS IMX


Lorsque vous utilisez un porte-outil rectiligne avec un embout standard, des collisions auront lieu là où la profondeur de coupe est supérieure à la longueur de coupe de l'embout.

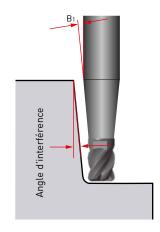
Lorsque vous utilisez un porte-outil rectiligne avec un embout excentré, des profondeurs de coupe plus importantes sont possibles car le diamètre de l'embout est plus grand que le porte-outil.

PO RECTILILIGNE + EMBOUT STANDARD

PO RECTILIGNE + EMBOUT DÉTALONNÉ


Lorsque la profondeur de coupe est inférieure à la longueur de coupe, on recommande un porte-à-faux inférieur à 3D.

Le type détalonné cylindrique convient à l'usinage vertical.


Le grand diamètre du porte-outil détalonné conique offre une stabilité dans les applications avec porte-à-faux important. Les types détalonné conique sont maintenant disponibles.

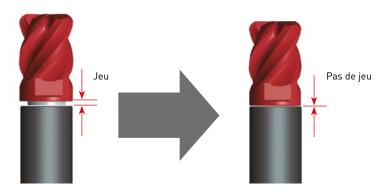
(Veuillez vous référer au diamètre D5 de chaque type pour le diamètre minimum.)

DÉTALONNÉ CYLINDRIQUE + EMBOUT STANDARD

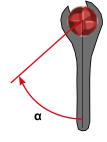
DÉTALONNÉ CONIQUE + EMBOUT STANDARD

INSTALLATION DE L'EMBOUT

- Avec un chiffon propre, enlevez la graisse et la poussière des surfaces conique et aux extrémités de l'embout et du porte-outil.
- 2 Appliquez une petite quantité de lubrifiant antigrippant uniquement sur la partie filetée.



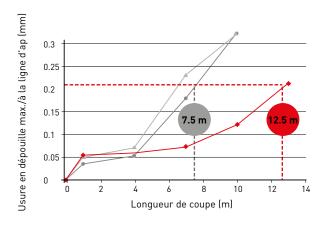
N'appliquez pas une trop grande quantité de lubrifiant antigrippant, sans quoi le serrage pourrait être affecté.


Évitez d'appliquer du lubrifiant antigrippant à ces endroits

Fixez l'embout et le porte-outil à l'aide de la clé fournie.

5 Référez-vous au tableau pour connaître les angles de serrage et le couple de serrage recommandés.

Taille de fixation	Angle de serrage de référence α	Couple de serrage préconisé (Nm)
Ø 10	50°	10
Ø 12	50°	15
Ø 16	50°	30
Ø 20	40°	50
Ø 25	35°	75

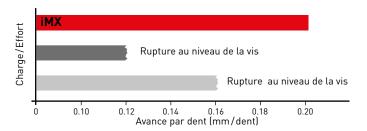


- Utilisez des gants de sécurité et les autres outils de protection nécessaires pour éviter de vous blesser.
- 2. Utilisez uniquement la clé fournie (les clés standard risquent d'être trop épaisses).

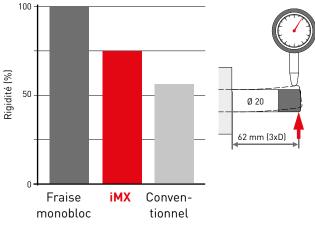
COMPARAISON DE LA DURÉE DE VIE DE L'OUTIL POUR L'USINAGE DE SURFACES PLANES EN INCONEL 718

EP7020 est une nouvelle nuance qui prolonge la durée de vie de l'outil pour l'usinage des matières difficiles à usiner.

Material	Inconel®718 (43HRC)
Outil	IMX12-U12N041L100C
Embout	IMX12B4HV12012
n (min ⁻¹)	1.700
Vc (m/min)	28
Vf (mm/min)	350
fz (mm/t)	0.05
ap (mm)	0.6
ae (mm)	1.2
Porte-à-faux (mm)	65
Mode de coupe	Coupe en avalant
Arrosage	Arrosage externe (Émulsion)
Machine	M/C vertical (BT40)



TEST DE RÉSISTANCE LORS DE RAINURAGE DU TITANE

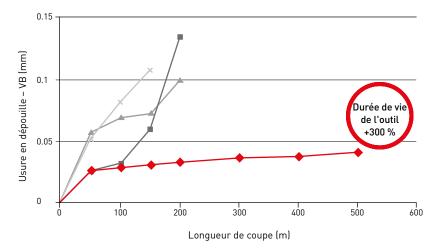

La fiabilité de la fixation de la vis est considérablement améliorée par rapport aux concurrents qui emploient des fixations en acier. Elle peut également supporter des charges de coupe élevées.

RIGIDITÉ

Le contact double-face de l'embout carbure et du porte-outil carbure augmente la rigidité de 30 %.

Material	Ti-6Al-4V (32HRC)
Outil	IMX20-U20N030L090C
Embout	IMX20C4HV200R10021
n (min ⁻¹)	1.100
Vc (m/min)	69
Vf (mm/min)	880
fz (mm/t)	0.20
ap (mm)	10
ae (mm)	20
Porte-à-faux (mm)	72
Mode de coupe	Coupe en avalant
Arrosage	Arrosage externe (Émulsion)
Machine	M/C vertical (BT50)
	-

■ Mitsubishi Materials ■ A ■ B : Conventionnel


PORTE-OUTIL EN ACIER

Porte-outils en acier économiques pour l'usinage à faible profondeur de coupe lorsque le porte-à-faux est court.

PERFORMANCE DE COUPE

La durée de vie de l'outil est 3 fois plus longue comparée aux types à queue en acier conventionnels.

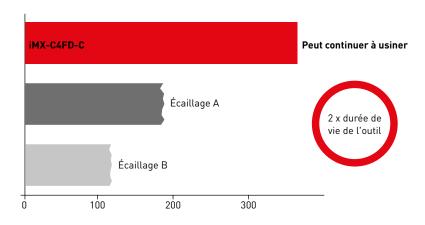
Material	XC55
Outil	IMX10-U10N014L070S
Embout	IMX10C4HV100R10010
n (min ⁻¹)	5.100
Vc (m/min)	160
Vf (mm/min)	1.530
fz (mm/t)	0.075
ap (mm)	5
ae (mm)	0.5
Porte-à-faux (mm)	30
Mode de coupe	Coupe en avalant
Arrosage	Émulsion externe
Machine	BT50 M/C

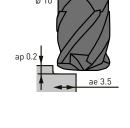
■ Mitsubishi Materials ■ A ■ B ■ C : Conventionnel

ÉTAT DE L'ARÊTE

iMX-C4FD-C

CARACTÉRISTIQUES


Faible section copeaux et longue arête de coupe combinées, confèrent à la fois haute performance et durée de vie de l'outil accrue.


PERFORMANCE DE COUPE

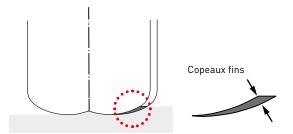
Les conditions de coupe recommandées peuvent varier en fonction de la stabilité des réglages.

Comparaison de la durée de vie de l'outil dans un alliage au chrome cobalt (Ø10).

Durée de vie de l'outil (alliage Cr-Co)

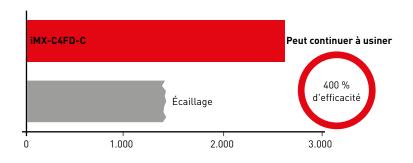
Matière	Alliage Cr-Co	
Outil	Ø 10	
n (min ⁻¹)	3.185	
Vc (m/min)	100	
Vf (mm/min)	1.911	
fz (mm/t)	0.15	
ap (mm)	0.2	
ae (mm)	3.5	
Porte-à-faux (mm)	45	
Arrosage	Soluble	
Méthode de coupe	Coupe en avalant	
Machine	Vertical (BT40)	

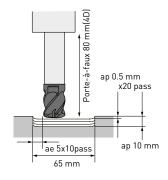
iMX-C4FD-C (longueur de coupe : 320 m)


Conventionnel A (longueur de coupe : 160 m)

Conventionnel B (longueur de coupe : 96 m)

iMX-C4FD-C


CARACTÉRISTIQUES



La résistance de coupe réduite dans le sens radial diminue la vibration et la déflexion de l'outil.

COMPARAISON DE L'EFFICACITÉ DANS DU Z40CDV5 (Ø20)

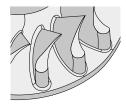
Comparaison de l'efficacité d'usinage dans du Z40CDV5

Matière	Z40CDV5
Outil	Ø 20
n (min ⁻¹)	1.600
Vc (m/min)	100
Vf (mm/min)	640 - 2.560
fz (mm/t)	0.10 - 0-40
ap (mm)	0.3
ae (mm)	5
Porte-à-faux (mm)	80
Arrosage	Air pulsée
Méthode de coupe	Rainurage et en avalant
Machine	Vertical (BT50)

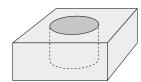
Pas d'écaillage iMX-C4FD-C

(Vf 2.560 mm/min)

Micro-écaillage Conventionnel (Vf 1.280 mm/min)

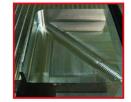

Mitsubishi Materials

 \blacksquare A : Conventionnel


EXEMPLES D'APPLICATION

Ces exemples sont issus d'applications réelles et peuvent ne pas respecter les conditions de coupe recommandées.

Tête	IMX12-U12N041L100C
Porte-outil	IMX12B6HV12012
Pièce	DIN Cf53
Composant	Rotor pour convertisseur de couple
Processus prévu	Finition de faces de pales
Vc (m/min)	200
fz (mm/dent)	0.08
ae (mm)	Approx. 1.4
ap (mm)	Approx. 1.0
Longueur de porte-à-faux (mm)	70
Méthode de coupe	Fraisage trochoïdal
Machine	M/C 5 axes (HSK A63)
Résultats	L'outil a réduit le temps d'usinage de 30 % tout en obtenant un excellent état de surface.



Tête	IMX20-U20N070L130C
Porte-outil	IMX20C4HV200R10021
Pièce	DIN S235
Composant	Acier à outils
Processus prévu	Finition de trous
Vc (m/min)	100
fz (mm/dent)	0.05
ae (mm)	1
ap (mm)	3
Longueur de porte-à-faux (mm)	105
Méthode de coupe	Interpolation hélicoïdale
Machine	Centre d'usinage
Résultats	Les hélices variables associées au robuste porte-outil carbure ont produit une meilleure performance que les outils concurrents.

EXEMPLES D'APPLICATION

Tête	IMX16-U16N024L080C
Porte-outil	IMX16C10HV160R10016
Pièce	Alliage de titane (Ti-6Al-4V)
Composant	Travaux d'essai
Processus prévu	Contournage
Vc (m/min)	151
fz (mm/dent)	0.08
ae (mm)	0.5
ap (mm)	16
Longueur de porte-à-faux (mm)	52
Arrosage	Arrosage externe (Émulsion)
Machine	Centre d'usinage
Résultats	L'usinage s'est déroulé sans vibration, même lorsque les pièces avaient le même rayon que l'outil.

FILIALES DE VENTE EUROPÉENNES

GERMANY

MITSUBISHI MATERIALS TOOLS EUROPE GMBH

Comeniusstr. 2 . 40670 Meerbusch

Phone +49 2159 91890 . Fax +49 2159 918966

Email admin@mmchq.de

UK Office

MMC HARDMETAL UK LTD

1 Centurion Court, Centurion Way

Tamworth, B77 5PN Phone + 44 1827 312312

Email sales@mitsubishicarbide.co.uk

UK Deliveries / Returns

Unit 4 B5K Business Park, Quartz Close

Tamworth, B77 4GR

MITSUBISHI MATERIALS ESPAÑA, S.A.

Calle Emperador 2 . 46136 Museros/Valencia

Phone + 34 96 1441711

Email comercial@mmevalencia.es

FRANCE

MMC METAL FRANCE S.A.R.L.

6, Rue Jacques Monod . 91400 Orsay

Phone +33 1 69 35 53 53 . Fax +33 1 69 35 53 50

Email mmfsales@mmc-metal-france.fr

POLAND

MMC HARDMETAL POLAND SP. Z 0.0

Al. Armii Krajowej 61 . 50 - 541 Wroclaw

Phone + 48 71335 1620 . Fax + 48 71335 1621 Email sales@mitsubishicarbide.com.pl

ITALY

MMC ITALIA S.R.L.

Viale Certosa 144 . 20156 Milano

Phone +39 0293 77031 . Fax +39 0293 589093

Email info@mmc-italia.it

TURKEY

MITSUBISHI MATERIALS TOOLS EUROPE GMBH ALMANYA İZMİR MERKEZ SUBESİ

Adalet Mahallesi Anadolu Caddesi No: 41-1 . 15001 35530 Bayraklı/İzmir

Phone +90 232 5015000 . Fax +90 232 5015007 Email info@mmcha.com.tr

Email info@mmchg.com.tr

www.mmc-carbide.com

DISTRIBUÉ PAR:

B200F

Publié par : * MITSUBISHI MATERIALS TOOLS EUROPE | 2025.10