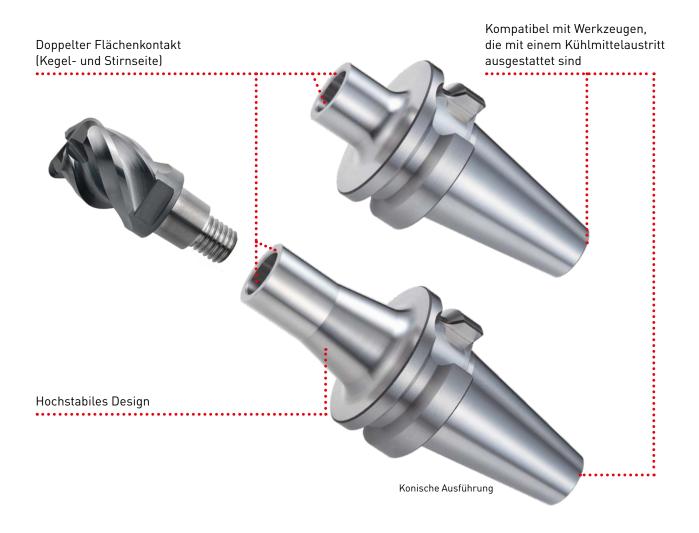
iMX


SCHAFTFRÄSER MIT AUSTAUSCHBAREM SCHNEIDKOPF

MITSUBISHI MATERIALS

IMX MONOBLOCK-AUFNAHME BT30

Neue Werkzeughalter für die iMX-Serie. Hohe Systemstabilität ermöglicht hocheffiziente Bearbeitung.

ER-SPANNZANGE

WECHSELKOPFFRÄSER Ideal für Anwendungen in Langdrehautomaten und Mehrspindelmaschinen. Kurze Ausspannung in Verbindung mit einfachem Kopfwechsel, ermöglichen eine einfache Handhabung und stabile Bearbeitung mit unterschiedlichsten Kopfgeometrien. Doppelter Flächenkontakt (Kegel- und Stirnseite)

iMX

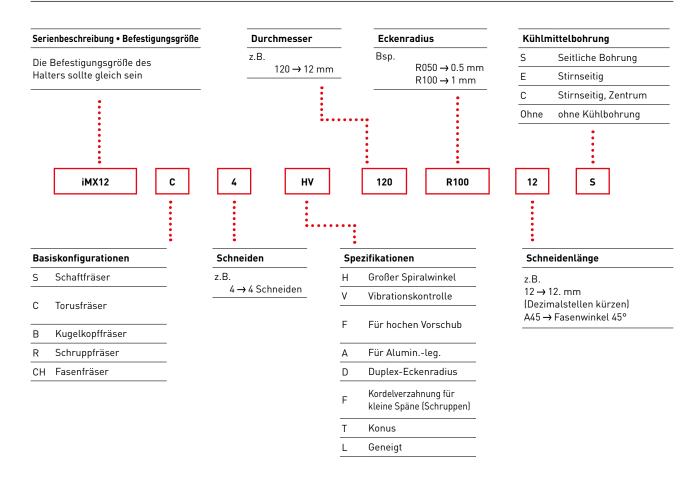
KOPF-AUSFÜHRUNGEN

Produkt Code	Eigenschaften		ZEFP	Größen- bereich		Lange Schneid- kante	Р	Н	М	S	N	<u>(ii)</u>
ZYLINDRISC	Н											
iMX-S3HV	Schaftfräser, 3-schneidig, variabler Spiralwinkel		3	Ø 10 – Ø 25			0		0	0	0	8
34V C (11V	Schaftfräser, 4-schneidig, variabler Spiralwinkel		,	Ø 10 – Ø 32			0		0	0	0	40
iMX-S4HV	Schaftfräser, 4-schneidig, variabler Spiralwinkel, lange Schneiden		- 4	Ø 16, Ø 20		✓	0		0	0	0	12
iMX-S4HV-S	Schaftfräser, 4-schneidig, variabler Spiralwinkel, mit Kühlmittelbohrung	-	4	Ø 10 – Ø 25	√		0		0	0	0	13
iMX-S3A	Schaftfräser, 3 Schneiden, für Aluminiumlegierung		3	Ø 10 – Ø 28							0	19
iMX-R4F	Schruppfräser, 4 schneidig		4	Ø 10 – Ø 25			0		0	0	0	22
TORISCH												
:MV C/UV	Torusfräser, 4-schneidig, variabler Spiralwinkel		,	Ø 10 – Ø 28			0		0	0	0	25
iMX-C4HV	Torusfräser, 4-schneidig, variabler Spiralwinkel, lange Schneiden		- 4	Ø 16, Ø 20		✓	0		0	0	0	
iMX-C4HV-S	Torusfräser, 4-schneidig, variabler Spiralwinkel, mit Kühlmittelbohrung		4	Ø 10 – Ø 25	√		0		0	0	0	28
iMX-C6HV-C	Torusfräser, 6-schneidig, variabler Spiralwinkel, mit Kühlmittelbohrung	-	6	Ø 10 – Ø 25	√		0		0	0		35
iMX-C6HV			6	Ø 10, Ø 12			0		0	0		
iMX-C10HV	Torusfräser, mehrschneidig, variable Spiralwinkel		10	Ø 16			0		0	0		37
iMX-C12HV			12	Ø 20, Ø 25			0		0	0		
iMX-C4FD-C	Duplex-Torusfräser mit Kühlmittel- bohrung, 4-schneidig, für hohen Vorschub		4	Ø 10 – Ø 25	✓		0	0	0	0	0	39
iMX-C4FV	Torusfräser zur hocheffizienten Bearbeitung, 4 Schneiden, variable Spiralwinkel		4	Ø 10 – Ø 25			0	0				41
iMX-C3A	Torusfräser, 3-schneidig, für Aluminiumlegierungen		3	Ø 10 – Ø 28							0	43
iMX-C8T			8	Ø 8	√				0	0		
iMX-C10T	Torusfräser, konische Schneide,		10	Ø 10	✓				0	0		//
iMX-C12T	mehrschneidig, mit Kühlmittelbohrung		12	Ø 15, Ø 19	✓				0	0		46
iMX-C15T			15	Ø 15, Ø 19	✓				0	0		

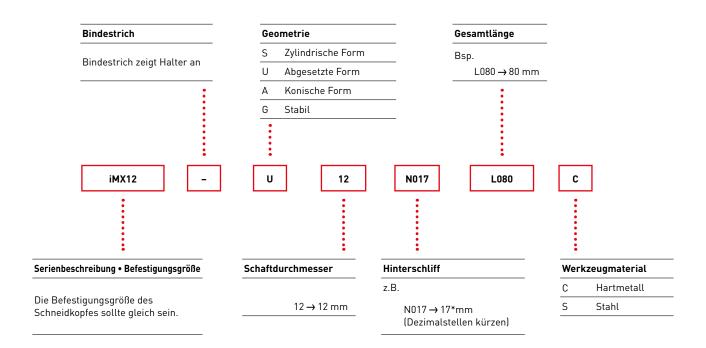
3

Produkt Code	Eigenschaften	ZEFP	Größen- bereich	(s	Lange chneid- kante	P	H M	S	N	(1)
TORISCH										
iMX-C8T-E	-	8	Ø 8	√			©) (0		
iMX-C10T-E	Torusfräser, konische Schneide,	10	Ø 10	✓			0	0		- 48
iMX-C12T-E	mehrschneidig, mit Kühlmittelbohrung	12	Ø 15, Ø 19	✓			©	0		40
iMX-C15T-E	-	15	Ø 15, Ø 19	✓			©	0		
iMX-RC4F-C	Torus-Schruppfräser, 4-schneidig	4	Ø 10 – Ø 20	✓		0	C) (0		50
KUGEL										
iMX-B4HV	Kugelkopffräser, 4 schneidig, variable Spiralnuten	4	Ø 10 – Ø 25				©	0	0	52
iMX-B4HV-E	Kugelkopffräser, 4-schneidig, variable Spiralwinkel, mit Kühlmittelbohrung	4	Ø 10 – Ø 25	✓		0	C) (0	0	53
iMX-B6HV	Kugelkopffräser, 6-schneidig, variable Nuten	6	Ø 10 – Ø 25				©	0	0	55
iMX-B2S/	Kugelkopf, 2-schneidig, für gehärteten Stahl	2	Ø 16 – Ø 20				D			57
iMX-B4S	Kugelkopf, 4-schneidig, für gehärteten Stahl	4	Ø 16 – Ø 20				9			57
iMX-B3FV	Kugelkopf, für hocheffiziente Bearbeitung, 3-schneidig, variable Schneidengeometrie	3	Ø 10 – Ø 20			0)			61
iMX-B4WH-S	Lollipop Kugelkopf mit Kühlmittelöffnung 4-schneidig	4	Ø 12 – Ø 20	✓	,	0	©	0	0	61
FASE										
iMX-CH3L	Fasenschneidkopf, 3-schneidig	3	Ø 10 – Ø 20					0		64
iMX-CH6V	Fasenschneidkopf, 6-schneidig	6	Ø 12 – Ø 20		1	0 () ©) ©		66

HALTER


NEW

Halter mit Unterschneidungsgeometrie, erhältlich in mittlerer, halblanger und langer Ausführung.


Тур	Länge	Konuswinkel	Material	
Abgesetzte Form	Mittel/ Halblang/ Lang	x -	Hartmetall	68
Abgesetzte i Silli	Mittel	^	Stahl	69
Zylindrische Form	Mittel/ Halblang/ Lang	— x -	Hartmetall	68
Zyunarische Form	Mittel		Stahl	69
Konische Form	Lang	1°	Hartmetall	68
Zylindrische Form	Mittel		Stahl	70
Konische Form	Mittel		Stahl	70
ER-Spannzange	Kurz		Stahl	71

IMX - IDENTIFIKATION

KOPF

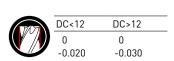
HALTER

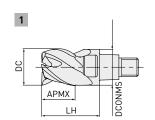
LANGE AUSKRAGUNG

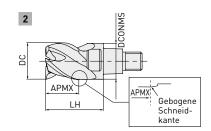
SCHNITTWERTE GEMÄSS FOLGENDER SCHNITTDATEN-EMPFEHLUNGEN REDUZIEREN

Material	L/D	Vc	n	fz	ae
	2	100 %	100 %	100 %	100 %
C-Stahl, Baustahl, —	3	100 %	100 %	100 %	100 %
legierter Stahl,	4	80 %	80 %	90 %	70 %
legierter Werkzeugstahl,	5	60 %	60 %	80 %	40 %
vergüteter Stahl,	6	50 %	50 %	70 %	30 %
	7	40 %	40 %	70 %	20 %
	8	40 %	40 %	60 %	10 %
Kupfer, Kupferlegierungen —	9	30 %	30 %	60 %	10 %
	2	100 %	100 %	100 %	100 %
Ausscheidungsgehärteter	3	100 %	100 %	100 %	100 %
rostfreier Stahl, Kobalt-	4	80 %	80 %	90 %	70 %
Chromlegierung, Rostfreier — Austenit- und Martensit-	5	60 %	60 %	80 %	40 %
Stahl	6	50 %	50 %	70 %	30 %
_	7	30 %	30 %	60 %	20 %
S Hitzebeständige	8	30 %	30 %	50 %	10 %
Legierungen, Titanlegierung	9	20 %	20 %	50 %	10 %

SCHAFTFRÄSER, 3-SCHNEIDIG, VARIABLER SPIRALWINKEL







Bestellnummer	DC	АРМХ	LH	DCONMS	ZEFP	EP7020	Тур
IMX10S3HV10008	10	8.5	16	9.7	3	•	1
IMX12S3HV12009	12	9.6	19	11.7	3	•	2
IMX16S3HV16012	16	12.8	24	15.5	3	•	2
IMX20S3HV20016	20	16	30	19.5	3	•	2
IMX25S3HV25020	25	20	37.5	24.5	3	•	2
							1/1

SCHNITTDATENEMPFEHLUNGEN

SCHULTERFRÄSEN

Material	DC	Vc	n	fz	Vf	ар	ae
C Chald	10	150	4800	0.09	1300	8	2
C-Stahl, — legierter Stahl,	12	150	4000	0.09	1100	9.6	2.4
Baustahl	16	150	3000	0.1	900	12.8	3.2
Kupfer, Kupferlegierungen —	20	150	2400	0.1	720	16	4
Kupier, Kupiertegierungen	25	150	1900	0.12	680	20	5
_	10	120	3800	0.06	680	8	2
	12	120	3200	0.065	620	9.6	2.4
Vergüteter Stahl, legierter Werkzeugstahl —	16	120	2400	0.075	540	12.8	3.2
tegrer ter Wernzeugstunt	20	120	1900	0.075	430	16	4
_	25	120	1500	0.075	340	20	5
	10	75	2400	0.06	430	8	2
Ausscheidungsgehärteter	12	75	2000	0.065	390	9.6	2.4
rostfreier Stahl,	16	75	1500	0.075	340	12.8	3.2
Kobalt-Chromlegierung	20	75	1200	0.075	270	16	4
	25	75	950	0.075	210	20	5
	10	40	1300	0.04	160	8	1
	12	40	1100	0.045	150	9.6	1.2
Hitzebeständige Legierungen	16	40	800	0.05	120	12.8	1.6
	20	40	640	0.05	96	16	2
	25	40	510	0.05	77	20	2.5
Rostfreier Austenit-	10	100	3200	0.075	720	8	2
und Martensit-Stahl	12	100	2700	0.08	650	9.6	2.4
	16	100	2000	0.09	540	12.8	3.2
Titanlagianung	20	100	1600	0.09	430	16	4
Titanlegierung —	25	100	1300	0.09	350	20	5

^{1.} Bei rostfreiem Stahl, Titanlegierung und hitzebeständiger Legierung wird die Verwendung eines wasserlöslichen Kühlmittels empfohlen.

^{2.} Bei geringen Schnitttiefen können Drehzahl und Vorschub erhöht werden.

^{3.} Fräswerkzeuge mit variablem Spiralwinkel ermöglichen eine bessere Vibrationskontrolle als Standardfräswerkzeuge. Falls die Stabilität der Maschine oder der Werkstückbefestigung jedoch sehr gering ist, können Vibrationen oder ungewöhnliche Geräusche auftreten. In diesem Fall müssen Drehzahl und Vorschub entsprechend reduziert werden, oder es muss eine geringere Schnitttiefe gewählt werden.

NUTENFRÄSEN

Material	DC	Vc	n	fz	Vf	ар
C-Stahl.	10	100	3200	0.04	380	5
legierter Stahl,	12	100	2700	0.05	410	6
Baustahl	16	100	2000	0.07	420	8
Kupfer, Kupferlegierungen —	20	100	1600	0.07	340	10
Kupier, Kupiertegierungen	25	100	1300	0.08	310	12
	10	80	2500	0.03	230	5
	12	80	2100	0.04	250	6
Vergüteter Stahl, legierter Werkzeugstahl —	16	80	1600	0.05	240	8
teglerter werkzeugstant —	20	80	1300	0.05	200	10
_	25	80	1000	0.05	150	12
	10	60	1900	0.025	100	5
Ausscheidungsgehärteter	12	60	1600	0.035	170	6
rostfreier Stahl,	16	60	1200	0.05	180	8
Kobalt-Chromlegierung	20	60	950	0.05	140	10
	25	60	760	0.05	110	12
	10	30	950	0.02	57	2
	12	30	800	0.03	72	2.4
Hitzebeständige Legierungen	16	30	600	0.05	90	3.2
	20	30	480	0.05	72	4
	25	30	380	0.05	57	5
Deathering Assatzait	10	75	2400	0.03	200	5
Rostfreier Austenit- und Martensit-Stahl	12	75	2000	0.04	240	6
	16	75	1500	0.06	270	8
Titantaniana	20	75	1200	0.06	220	10
Titanlegierung —	25	75	950	0.06	170	12

- 1. Bei rostfreiem Stahl, Titanlegierung und hitzebeständiger Legierung wird die Verwendung eines wasserlöslichen Kühlmittels empfohlen.
- 2. Bei geringen Schnitttiefen können Drehzahl und Vorschub erhöht werden.
- 3. Fräswerkzeuge mit variablem Spiralwinkel ermöglichen eine bessere Vibrationskontrolle als Standardfräswerkzeuge. Falls die Stabilität der Maschine oder der Werkstückbefestigung jedoch sehr gering ist, können Vibrationen oder ungewöhnliche Geräusche auftreten. In diesem Fall müssen Drehzahl und Vorschub entsprechend reduziert werden, oder es muss eine geringere Schnitttiefe gewählt werden.

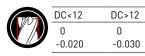
EINTAUCHEN

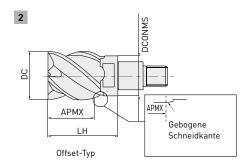
	Material	DC	Vc	n	fz	Vf	ар	AZ
	C-Stahl,	10	100	3200	0.14	450	5	2.5
Р	legierter Stahl,	12	100	2700	0.14	380	6	2.5
	Baustahl	16	100	2000	0.14	280	8	2.5
N I	Kunfan Kunfanlagianungan	20	100	1600	0.14	220	10	2.5
N	Kupfer, Kupferlegierungen	25	100	1300	0.14	180	12.5	2.5
		10	70	2200	0.09	200	5	2
		12	70	1900	0.09	170	6	2
Р	Vergüteter Stahl, legierter Werkzeugstahl	16	70	1400	0.09	130	8	2
	teglerter Werkzeugstant	20	70	1100	0.09	99	10	2
	·	25	70	890	0.09	80	12.5	2
		10	40	1300	0.03	39	5	0.6
	Ausscheidungsgehärteter	12	40	1100	0.03	33	6	0.6
М	rostfreier Stahl,	16	40	800	0.03	24	8	0.6
	Kobalt-Chromlegierung	20	40	640	0.03	19	10	0.6
		25	40	510	0.03	15	12.5	0.6
	D 16 ' A 1 '	10	60	1900	0.03	57	5	0.6
М	Rostfreier Austenit- und Martensit-Stahl	12	60	1600	0.03	48	6	0.6
	unu martensit-stant	16	60	1200	0.03	36	8	0.6
_	Titantanianun	20	60	950	0.03	29	10	0.6
S	Titanlegierung —	25	60	760	0.03	23	12.5	0.6

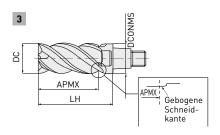
- 1. Bei rostfreiem Stahl, Titanlegierung und hitzebeständiger Legierung wird die Verwendung eines wasserlöslichen Kühlmittels empfohlen.
- Fräswerkzeuge mit variablem Spiralwinkel ermöglichen eine bessere Vibrationskontrolle als Standardfräswerkzeuge.
 Falls die Stabilität der Maschine oder der Werkstückbefestigung jedoch sehr gering ist, können Vibrationen oder
 ungewöhnliche Geräusche auftreten. In diesem Fall müssen Drehzahl und Vorschub entsprechend reduziert werden,
 oder es muss eine geringere Schnitttiefe gewählt werden.

iMX-S4HV

SCHAFTFRÄSER, 4-SCHNEIDIG, VARIABLER SPIRALWINKEL

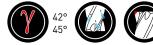






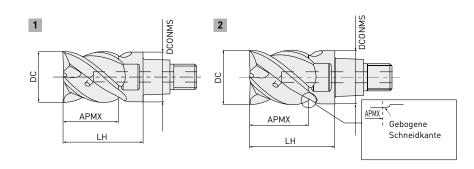
Bestellnummer	EP7020	DC	АРМХ	LH	DCONMS	ZEFP	Тур
IMX10S4HV10010	•	10	10.5	16	9.7	4	1
IMX10S4HV12012	•	12	12.5	19	9.7	4	2
IMX12S4HV12012	•	12	12.5	19	11.7	4	1
IMX12S4HV14014	•	14	14.5	22.5	11.7	4	2
IMX16S4HV16016	•	16	16.5	24	15.5	4	1
IMX16S4HV18018	•	18	18.5	27	15.5	4	2
IMX20S4HV20020	•	20	20	30	19.5	4	2
IMX20S4HV22023	•	22	23	33	19.5	4	2
IMX25S4HV25025	•	25	25	37.5	24.5	4	2
IMX25S4HV28029	•	28	29	41.5	24.5	4	2
IMX25S4HV30031	•	30	31	43.5	24.5	4	2
IMX25S4HV32033	•	32	33	45.5	24.5	4	2

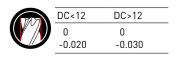
14 (Vc)


AUSFÜHRUNG MIT LANGEN SCHNEIDEN

Bestellnummer	DC	АРМХ	LH	DCONMS	ZEFP	EP7020	Тур
IMX16S4HV16032	16	32	40	15.5	4	•	3
IMX20S4HV20040	20	40	50	19.5	4	•	3
							1/1

iMX-S4HV-S





SCHAFTFRÄSER, 4-SCHNEIDIG, VARIABLER SPIRALWINKEL, MIT KÜHLMITTELBOHRUNG

Bestellnummer	EP7020	DC	АРМХ	LH	DCONMS	ZEFP	Тур
IMX10S4HV10010S	•	10	10.5	16	9.7	4	1
IMX12S4HV12012S	•	12	12.5	19	11.7	4	1
IMX16S4HV16016S	•	16	16.5	24	15.5	4	1
IMX20S4HV20020S	•	20	20	30	19.5	4	2
IMX25S4HV25025S	•	25	25	37.5	24.5	4	2
							1/1

iMX-S4HV/S4HV-S

SCHNITTDATENEMPFEHLUNGEN

SCHULTERFRÄSEN

	Material	DC	Vc	n	fz	Vf	ар	ae
	C-Stahl	10	150	4800	0.09	1700	10	2
Р	legierter Stahl,	12	150	4000	0.09	1400	12	2.4
	Baustahl	16	150	3000	0.1	1200	16	3.2
N	Kupfer, Kupferlegierungen –	20	150	2400	0.1	960	20	4
IN	Rupier, Rupier tegier ungen	25	150	1900	0.12	910	25	5
	_	10	120	3800	0.06	910	10	2
	V C. II	12	120	3200	0.065	830	12	2.4
Р	Vergüteter Stahl, legierter Werkzeugstahl –	16	120	2400	0.075	720	16	3.2
	_	20	120	1900	0.075	570	20	4
		25	120	1500	0.075	450	25	5
		10	75	2400	0.06	580	10	2
	Ausscheidungsgehärteter _	12	75	2000	0.065	520	12	2.4
М	rostfreier Stahl,	16	75	1500	0.075	450	16	3.2
	Kobalt-Chromlegierung _	20	75	1200	0.075	360	20	4
		25	75	950	0.075	290	25	5
	_	10	40	1300	0.04	210	10	1
		12	40	1100	0.045	200	12	1.2
S	Hitzebeständige Legierungen	16	40	800	0.05	160	16	1.6
		20	40	640	0.05	130	20	2
		25	40	510	0.05	100	25	2.5
	Rostfreier Austenit-	10	100	3200	0.075	960	10	2
М	und Martensit-Stahl	12	100	2700	0.08	860	12	2.4
		16	100	2000	0.09	720	16	3.2
c	Titanlagiarung	20	100	1600	0.09	580	20	4
S	Titanlegierung -	25	100	1300	0.09	470	25	5

^{1.} Bei rostfreiem Stahl, Titanlegierung und hitzebeständiger Legierung wird die Verwendung eines wasserlöslichen Kühlmittels empfohlen.

^{2.} Bei geringen Schnitttiefen können Drehzahl und Vorschub erhöht werden.

^{3.} Fräswerkzeuge mit variablem Spiralwinkel ermöglichen eine bessere Vibrationskontrolle als Standardfräswerkzeuge. Falls die Stabilität der Maschine oder der Werkstückbefestigung jedoch sehr gering ist, können Vibrationen oder ungewöhnliche Geräusche auftreten. In diesem Fall müssen Drehzahl und Vorschub entsprechend reduziert werden, oder es muss eine geringere Schnitttiefe gewählt werden.

iMX-S4HV/S4HV-S - NUTENFRÄSEN

Material	DC	Vc	n	fz	Vf	ар
0.51.11	10	100	3200	0.04	510	5
C-Stahl, — legierter Stahl, —	12	100	2700	0.05	540	6
Baustahl	16	100	2000	0.07	560	8
	20	100	1600	0.07	450	10
Kupfer, Kupferlegierungen —	25	100	1300	0.08	420	12
	10	80	2500	0.03	300	5
	12	80	2100	0.04	340	6
Vergüteter Stahl, legierter Werkzeugstahl —	16	80	1600	0.05	320	8
tegierter werkzeugstant	20	80	1300	0.05	260	10
_	25	80	1000	0.05	200	12
	10	60	1900	0.025	190	5
Ausscheidungsgehärteter	12	60	1600	0.035	220	6
rostfreier Stahl,	16	60	1200	0.05	240	8
Kobalt-Chromlegierung	20	60	950	0.05	190	10
	25	60	760	0.05	150	12
	10	30	950	0.02	76	2
	12	30	800	0.03	96	2.4
— Hitzebeständige Legierungen	16	30	600	0.05	120	3.2
	20	30	480	0.05	96	4
_	25	30	380	0.05	76	5
	10	75	2400	0.03	290	5
Rostfreier Austenit-	12	75	2000	0.04	320	6
und Martensit-Stahl	16	75	1500	0.06	360	8
	20	75	1200	0.06	290	10
Titanlegierung —	25	75	950	0.06	230	12

iMX-S4HV/S4HV-S

SCHULTERFRÄSEN

No	Mate	erial	L/D	DC	Vc	n	fz	Vf	ар	ae
Part				12	150	4000	0.09	1400	12	1.2
Part										1.4
Part				18	150	2700	0.1	1100		1.8
Part			≤ 3	22			0.1	880		2.2
Page	C_Sta	ahl		28	150	1700	0.12	820	28	2.8
Part				30	150	1600	0.12	770	30	3
Part	Baus	stahl		32	150	1500	0.12	720	32	3.2
Name		-		12	90	2400	0.07	670	12	0.5
Name				14	90	2000	0.07	560	14	0.6
Name				18	90	1600	0.08	510	18	0.7
Recommendant Part			5	22	90	1300	0.08	420	22	0.9
Name				28	90	1000	0.1	400	28	1.1
Name				30	90	950	0.1	380	30	1.2
Name				32	90	900	0.1	360	32	1.3
18		-		12	60	1600	0.06	380	12	0.2
Part	Kunfa	an Kunfarlagianungan		14	60	1400	0.06	340	14	0.3
Parameter Para	Kupie	er, Kuprerlegierungen		18	60	1100	0.07	310	18	0.4
Parameter Para			7	22	60	870	0.07	240	22	0.4
Parameter Stahl, legierter Werkzeugstahl Parameter Stahl, legierter Stahl, legierter Werkzeugstahl Parameter Stahl, legierter Werkzeugstahl Parameter Stahl, legierter Stahl, le				28	60	680	0.08	220	28	0.6
Per Vergüteter Stahl, legierter Werkzeugstahl Per Vergüteter Stahl, legierter Werkzeugstahl Fig. 12 120 3200 0.06 770 12 14 120 2700 0.065 700 14 18 120 2100 0.075 630 18 18 120 1700 0.075 510 22 28 120 1700 0.075 370 30 32 120 1300 0.075 370 30 32 120 1200 0.075 360 32 14 70 1900 0.05 380 12 14 70 1600 0.05 320 14 18 70 1200 0.06 270 18 22 70 1000 0.06 270 18 22 70 1000 0.06 170 28 30 70 740 0.06 180 30 32 120 120 1200 0.06 170 32 28 70 700 0.06 170 32 11 50 1300 0.04 210 12 14 50 1100 0.05 220 14 18 50 880 0.05 180 18 7 22 50 720 0.05 140 22 28 50 570 0.05 110 28				30	60	640	0.08	200	30	0.6
Parameter Para				32	60	600	0.08	190	32	0.6
Position				12	120	3200	0.06	770	12	1.2
Per Vergüteter Stahl, legierter Werkzeugstahl Fig. 1. Stahl, legierter Werkzeugstahl				14	120	2700	0.065	700	14	1.4
Per Vergüteter Stahl, legierter Werkzeugstahl Fig. 120				18	120	2100	0.075	630	18	1.8
Per Vergüteter Stahl, legierter Werkzeugstahl 5			≼3	22	120	1700	0.075	510	22	2.2
Per Vergüteter Stahl, legierter Werkzeugstahl Fig. 12				28	120	1400	0.075	420	28	2.8
Per Vergüteter Stahl, legierter Werkzeugstahl Figure 12				30	120	1300	0.075	390	30	3
Per Vergüteter Stahl, legierter Werkzeugstahl Figure 19		_		32	120	1200	0.075	360	32	3.2
P Vergüteter Stahl, legierter Werkzeugstahl 5				12	70	1900	0.05	380	12	0.5
P Vergüteter Stahl, legierter Werkzeugstahl 5 22 70 1000 0.06 240 22 28 70 800 0.06 190 28 30 70 740 0.06 180 30 32 70 700 0.06 170 32 12 50 1300 0.04 210 12 14 50 1100 0.05 220 14 18 50 880 0.05 180 18 7 22 50 720 0.05 140 22 28				14	70	1600	0.05	320	14	0.6
legierter Werkzeugstahl	Vorgi	iitatar Ctabl		18	70	1200	0.06	290	18	0.7
28 70 800 0.06 190 28 30 70 740 0.06 180 30 32 70 700 0.06 170 32 12 50 1300 0.04 210 12 14 50 1100 0.05 220 14 18 50 880 0.05 180 18 7 22 50 720 0.05 140 22 28 50 570 0.05 110 28			5	22	70	1000	0.06	240	22	0.9
32 70 700 0.06 170 32 12 50 1300 0.04 210 12 14 50 1100 0.05 220 14 18 50 880 0.05 180 18 7 22 50 720 0.05 140 22 28 50 570 0.05 110 28		•		28		800	0.06	190	28	1.1
12 50 1300 0.04 210 12 14 50 1100 0.05 220 14 18 50 880 0.05 180 18 7 22 50 720 0.05 140 22 28 50 570 0.05 110 28				30	70	740	0.06	180		1.2
14 50 1100 0.05 220 14 18 50 880 0.05 180 18 7 22 50 720 0.05 140 22 28 50 570 0.05 110 28		-		32	70	700	0.06	170		1.3
7 22 50 720 0.05 180 18 22 50 720 0.05 140 22 28 50 570 0.05 110 28										0.2
7 22 50 720 0.05 140 22 28 50 570 0.05 110 28										0.3
28 50 570 0.05 110 28										0.4
			7							0.4
30 50 520 0.05 110 20							-			0.6
				30	50	530	0.05	110	30	0.6
32 50 500 0.05 100 32				32	50	500	0.05	100	32	0.6 1/3

iMX-S4HV/S4HV-S - SCHULTERFRÄSEN

	Material	L/D	DC	Vc	n	fz	Vf	ар	ae
			12	75	2000	0.06	480	12	1.2
			14	75	1700	0.065	440	14	1.4
			18	75	1300	0.075	390	18	1.8
		≼3	22	75	1100	0.075	330	22	2.2
			28	75	850	0.075	260	28	2.8
			30	75	800	0.075	240	30	3
			32	75	750	0.075	230	32	3.2
	-		12	50	1300	0.05	260	12	0.5
			14	50	1100	0.05	220	14	0.6
	Ausscheidungsgehärteter		18	50	880	0.06	210	18	0.7
М	rostfreier Stahl,	5	22	50	720	0.06	170	22	0.9
	Kobalt-Chromlegierung		28	50	570	0.06	140	28	1.1
			30	50	530	0.06	130	30	1.2
			32	50	500	0.06	120	32	1.3
	-		12	24	640	0.04	100	12	0.2
			14	24	550	0.05	110	14	0.3
			18	24	420	0.05	84	18	0.4
		7	22	24	350	0.05	70	22	0.4
			28	24	270	0.05	54	28	0.6
			30	24	250	0.05	50	30	0.6
			32	24	240	0.05	48	32	0.6
			12	30	800	0.04	130	12	0.9
			14	30	680	0.045	120	14	1.1
			18	40	710	0.05	140	18	1.4
		≤ 3	22	40	580	0.05	120	22	1.7
			28	40	450	0.05	90	28	2.1
			30	40	420	0.05	84	30	2.3
			32	40	400	0.05	80	32	2.4
	-		12	10	270	0.03	32	12	0.4
			14	10	230	0.04	37	14	0.4
			18	19	340	0.04	54	18	0.6
S	Hitzebeständige Legierungen	5	22	19	270	0.04	43	22	0.7
		· ·	28	19	220	0.04	35	28	0.8
			30	19	200	0.04	32	30	0.9
			32	19	190	0.04	30	32	1.0
	-		12	_	— — — — — — — — — — — — — — — — — — —	-	_		- -
			14						
			18						
		7	22						
		,	28						
			30						
			32			_			
			JZ		_				2/3

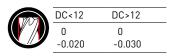
iMX-S4HV/S4HV-S - SCHULTERFRÄSEN

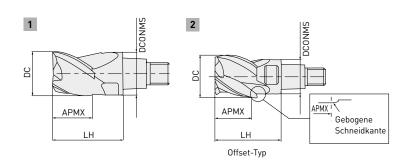
	Material	L/D	DC	Vc	n	fz	Vf	ар	ae
	Tracer lac	2,0	20	••		12	••	ч	uc
			12	100	2700	0.075	810	12	1.2
			14	100	2300	0.08	740	14	1.4
			18	100	1800	0.09	650	18	1.8
		≼3	22	100	1400	0.09	500	22	2.2
	D (() A () ()		28	100	1100	0.09	400	28	2.8
М	Rostfreier Austenit- und Martensit-Stahl		30	100	1100	0.09	400	30	3
	and Martensit Stant		32	100	990	0.09	360	32	3.2
			12	60	1600	0.06	380	12	0.5
		5	14	60	1400	0.06	340	14	0.6
			18	60	1100	0.07	310	18	0.7
			22	60	870	0.07	240	22	0.9
			28	60	680	0.07	190	28	1.1
			30	60	640	0.07	180	30	1.2
	_		32	60	600	0.07	170	32	1.3
			12	32	850	0.05	170	12	0.2
S	Titanlegierung		14	32	730	0.06	180	14	0.3
3	Titantegier ung		18	32	570	0.06	140	18	0.4
		7	22	32	460	0.06	110	22	0.4
			28	32	360	0.06	86	28	0.6
		-	30	32	340	0.06	82	30	0.6
			32	32	320	0.06	77	32	0.6

^{1.} Bei rostfreiem Stahl, Titanlegierung und hitzebeständiger Legierung wird die Verwendung eines wasserlöslichen Kühlmittels

Bei geringen Schnitttiefen können Drehzahl und Vorschub erhöht werden.
 Fräswerkzeuge mit variablem Spiralwinkel ermöglichen eine bessere Vibrationskontrolle als Standardfräswerkzeuge. Falls die Stabilität der Maschine oder der Werkstückbefestigung jedoch sehr gering ist, können Vibrationen oder ungewöhnliche Geräusche auftreten. In diesem Fall müssen Drehzahl und Vorschub entsprechend reduziert werden, oder es muss eine geringere Schnitttiefe gewählt werden.

iMX-S3A





SCHAFTFRÄSER, 3 SCHNEIDIG, FÜR ALUMINIUMLEGIERUNG

Bestellnummer	ET2020	DC	АРМХ	LH	DCONMS	ZEFP	Тур
IMX10S3A10008	•	10	8.5	16	9.7	3	1
IMX10S3A12010	•	12	10.1	19	9.7	3	2
IMX12S3A12009	•	12	9.6	19	11.7	3	2
IMX12S3A14011	•	14	11.7	22.5	11.7	3	2
IMX16S3A16012	•	16	12.8	24	15.5	3	2
IMX16S3A18014	•	18	14.9	27	15.5	3	2
IMX20S3A20016	•	20	16	30	19.5	3	2
IMX20S3A22018	•	22	18.6	33	19.5	3	2
IMX25S3A25020	•	25	20	37.5	24.5	3	2
IMX25S3A28023	•	28	23.4	41.5	24.5	3	2

iMX-S3A

SCHNITTDATENEMPFEHLUNGEN

SCHULTERFRÄSEN

	Material	DC	Vc	n	fz	Vf	ар	ae
		10	500	16000	0.117	5600	8	3
		12	500	13000	0.118	4600	9.6	3.6
N	Aluminiumlegierung	16	500	10000	0.153	4600	12.8	4.8
		20	500	8000	0.175	4200	16	6
		25	500	6000	0.211	3800	20	7.5

1/1

NUTENFRÄSEN

Material	DC	Vc	n	fz	Vf	ар
	10	500	16000	0.068	3300	5
	12	500	13000	0.072	2800	6
N Aluminiumlegierung	16	500	10000	0.093	2800	8
	20	500	8000	0.108	2600	10
	25	500	6000	0.127	2300	12.5

IMX-S3A - SCHNITTDATENEMPFEHLUNGEN

EINTAUCHEN

	Material	DC	Vc	n	fz	Vf	ар	AZ
		10	300	9600	0.1	960	5	2.5
		12	300	8000	0.1	800	6	2.5
Ν	Aluminiumlegierung	16	300	6000	0.1	600	8	2.5
		20	300	4800	0.1	480	10	2.5
		25	300	3800	0.1	380	12.5	2.5

1/1

SCHULTERFRÄSEN

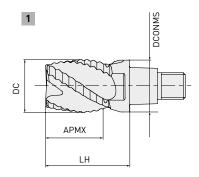
Material	L/D	DC	Vc	n	fz	Vf	ар	ae
		12	500	13000	0.117	4600	9.6	2.4
		14	500	11000	0.118	3900	11.2	2.8
	≼3	18	500	8800	0.153	4000	14.4	3.6
		22	500	7200	0.175	3800	17.6	4.4
		28	500	5700	0.211	3600	22.4	5.6
		12	300	8000	0.09	2200	9.6	1.0
		14	300	6800	0.09	1800	11.2	1.1
N Aluminiumlegierung	5	18	300	5300	0.12	1900	14.4	1.4
		22	300	4300	0.14	1800	17.6	1.8
		28	300	3400	0.17	1700	22.4	2.2
_		12	200	5300	0.08	1300	9.6	0.5
		14	200	4500	0.08	1100	11.2	0.6
	7	18	200	3500	0.11	1200	14.4	0.7
		22	200	2900	0.12	1000	17.6	0.9
		28	200	2300	0.15	1000	22.4	1.1

^{1.} Die Verwendung eines wasserlöslichen Kühlschmierstoffes wird empfohlen.

Falls die Stabilität der Maschine oder des Werkstücks gering ist, können Vibrationen auftreten.
In diesem Fall müssen Drehzahl und Vorschub entsprechend reduziert werden, oder es muss eine
geringere Schnitttiefe gewählt werden.

iMX-R4F

SCHRUPPFRÄSER, 4 SCHNEIDIG



Bestellnummer	EP7020	DC	АРМХ	LH	DCONMS	ZEFP	Тур
IMX10R4F10010	•	10	10.5	16	9.7	4	
IMX12R4F12012	•	12	12.5	19	11.7	4	
IMX16R4F16016	•	16	16.5	24	15.5	4	1
IMX20R4F20021	•	20	21	30	19.5	4	
IMX25R4F25026	•	25	26	37.5	24.5	4	

1,

iMX-R4F

SCHNITTDATENEMPFEHLUNGEN

SCHULTERFRÄSEN

C-Stahl,	10 12	150					
C-Stant,	12		4800	0.045	860	8	4
P legierter Stahl,		150	4000	0.045	720	9.6	4.8
Baustahl	16	150	3000	0.05	600	12.8	6.4
N Kupfer, Kupferlegieru	20	150	2400	0.05	480	16	8
Kupier, Kupiertegierui	25	150	1900	0.06	460	20	10
	10	120	3800	0.03	460	8	4
V C. 11	12	120	3200	0.033	420	9.6	4.8
P Vergüteter Stahl, legierter Werkzeugsta	hl 16	120	2400	0.038	360	12.8	6.4
tegierter Wernzeugsta	20	120	1900	0.038	290	16	8
	25	120	1500	0.038	230	20	10
	10	75	2400	0.03	290	8	4
Ausscheidungsgehärte	eter 12	75	2000	0.033	260	9.6	4.8
M rostfreier Stahl,	16	75	1500	0.038	230	12.8	6.4
Kobalt-Chromlegierur	20	75	1200	0.038	180	16	8
	25	75	950	0.038	140	20	10
	10	40	1300	0.04	210	8	1
	12	40	1100	0.045	200	9.6	1.2
S Hitzebeständige Legie	rungen 16	40	800	0.05	160	12.8	1.6
	20	40	640	0.05	130	16	2
	25	40	510	0.05	100	20	2.5
Rostfreier Austenit-	10	100	3200	0.038	480	8	4
und Martensit-Stahl	12	100	2700	0.04	430	9.6	4.8
	16	100	2000	0.045	360	12.8	6.4
C. Titanlagianung	20	100	1600	0.045	290	16	8
S Titanlegierung	25	100	1300	0.045	230	20	10

^{1.} Bei rostfreiem Stahl, Titanlegierung und hitzebeständiger Legierung wird die Verwendung eines wasserlöslichen Kühlmittels empfohlen.

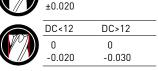
^{2.} Bei geringen Schnitttiefen können Drehzahl und Vorschub erhöht werden.

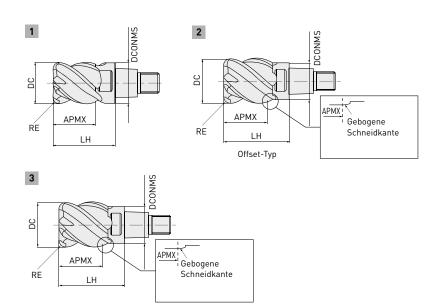
Falls die Stabilität der Maschine oder des Werkstücks gering ist, können Vibrationen auftreten.
 In diesem Fall müssen Drehzahl und Vorschub entsprechend reduziert werden, oder es muss eine geringere Schnitttiefe gewählt werden.

imx-r4f - Schnittdatenempfehlungen

NUTENFRÄSEN

Material	DC	Vc	n	fz	Vf	ар
C-Stahl	10	100	3200	0.04	510	5
legierter Stahl,	12	100	2700	0.045	490	6
Baustahl	16	100	2000	0.05	400	8
Kunfan Kunfanlasiasunsan	20	100	1600	0.05	320	10
Kupfer, Kupferlegierungen –	25	100	1300	0.06	310	12
	10	80	2500	0.03	300	5
	12	80	2100	0.032	270	6
Vergüteter Stahl, legierter Werkzeugstahl –	16	80	1600	0.038	240	8
legierter Werkzeugstant –	20	80	1300	0.038	200	10
-	25	80	1000	0.038	150	12
	10	40	1300	0.016	83	4
- Ausscheidungsgehärteter _	12	40	1100	0.02	88	4.8
rostfreier Stahl,	16	40	800	0.024	77	6.4
Kobalt-Chromlegierung -	20	40	640	0.027	70	8
Ī	25	40	510	0.027	55	10
	10	60	1900	0.02	150	4
Rostfreier Austenit- und Martensit-Stahl	12	60	1600	0.025	160	4.8
and Martensit Stant	16	60	1200	0.03	140	6.4
	20	60	950	0.034	130	8
Titanlegierung —	25	60	760	0.034	100	10


- 1. Bei rostfreiem Stahl, Titanlegierung und hitzebeständiger Legierung wird die Verwendung eines wasserlöslichen Kühlmittels empfohlen.
- 2. Bei geringen Schnitttiefen können Drehzahl und Vorschub erhöht werden.
- Falls die Stabilität der Maschine oder des Werkstück gering ist, können Vibrationen auftreten. In diesem Fall müssen Drehzahl und Vorschub entsprechend reduziert werden, oder es muss eine geringere Schnitttiefe gewählt werden.


iMX-C4HV

TORUSFRÄSER, 4-SCHNEIDIG, VARIABLER SPIRALWINKEL

Bestellnummer	EP7020	DC	RE	APMX	LH	DCONMS	ZEFP	Тур
IMX10C4HV100R03010	•	10	0.3	10	16	9.7	4	3
IMX10C4HV100R05010	•	10	0.5	10.5	16	9.7	4	1
IMX10C4HV100R10010	•	10	1	10.5	16	9.7	4	1
IMX10C4HV100R15010	•	10	1.5	10.5	16	9.7	4	1
IMX10C4HV100R20010	•	10	2	10.5	16	9.7	4	1
IMX10C4HV100R25010	•	10	2.5	10.5	16	9.7	4	1
IMX10C4HV100R30010	•	10	3	10.5	16	9.7	4	1
IMX10C4HV110R05011	•	11	0.5	11.5	16	9.7	4	2
IMX10C4HV110R10011	*	11	1	11.5	16	9.7	4	2
IMX10C4HV120R03012	•	12	0.3	12.5	19	9.7	4	2
IMX10C4HV120R05012	•	12	0.5	12.5	19	9.7	4	2
IMX10C4HV120R10012	•	12	1	12.5	19	9.7	4	2
IMX10C4HV120R20012	•	12	2	12.5	19	9.7	4	2
IMX12C4HV120R03012	•	12	0.3	12	19	11.7	4	3
IMX12C4HV120R05012	•	12	0.5	12.5	19	11.7	4	1
IMX12C4HV120R10012	•	12	1	12.5	19	11.7	4	1
IMX12C4HV120R15012	•	12	1.5	12.5	19	11.7	4	1
IMX12C4HV120R20012	•	12	2	12.5	19	11.7	4	1
IMX12C4HV120R25012	•	12	2.5	12.5	19	11.7	4	1
IMX12C4HV120R30012	•	12	3	12.5	19	11.7	4	1
IMX12C4HV120R40012	•	12	4	12	19	11.7	4	1
IMX12C4HV130R05013	*	13	0.5	13.5	21.5	11.7	4	2
IMX12C4HV130R10013	*	13	1	13.5	21.5	11.7	4	2

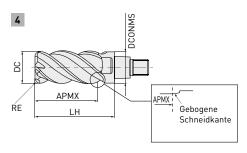
imx-c4hv - Torusfräser, 4-schneidig, Variabler Spiralwinkel

Bestellnummer	EP7020	DC	RE	АРМХ	LH	DCONMS	ZEFP	Тур
IMX12C4HV140R03014	•	14	0.3	14.5	22.5	11.7	4	2
IMX12C4HV140R05014	•	14	0.5	14.5	22.5	11.7	4	2
IMX12C4HV140R10014	•	14	1	14.5	22.5	11.7	4	2
IMX12C4HV140R20014	•	14	2	14.5	22.5	11.7	4	2
IMX16C4HV160R03016	•	16	0.3	16	24	15.5	4	3
IMX16C4HV160R05016	•	16	0.5	16.5	24	15.5	4	1
IMX16C4HV160R10016	•	16	1	16.5	24	15.5	4	1
IMX16C4HV160R15016	•	16	1.5	16.5	24	15.5	4	1
IMX16C4HV160R20016	•	16	2	16.5	24	15.5	4	1
IMX16C4HV160R25016	•	16	2.5	16.5	24	15.5	4	1
IMX16C4HV160R30016	•	16	3	16.5	24	15.5	4	1
IMX16C4HV160R40016	•	16	4	16.5	24	15.5	4	1
IMX16C4HV160R50016	•	16	5	16.5	24	15.5	4	1
IMX16C4HV170R05017	*	17	0.5	17.5	26	15.5	4	2
IMX16C4HV170R10017	*	17	1	17.5	26	15.5	4	2
IMX16C4HV180R03018	•	18	0.3	18.5	27	15.5	4	2
IMX16C4HV180R05018	•	18	0.5	18.5	27	15.5	4	2
IMX16C4HV180R10018	•	18	1	18.5	27	15.5	4	2
IMX16C4HV180R20018	•	18	2	18.5	27	15.5	4	2
IMX16C4HV180R30018	•	18	3	18.5	27	15.5	4	2
IMX20C4HV200R03020	•	20	0.3	20	30	19.5	4	3
IMX20C4HV200R05020	•	20	0.5	20	30	19.5	4	3
IMX20C4HV200R10020	•	20	1	20	30	19.5	4	3
IMX20C4HV200R15020	•	20	1.5	20	30	19.5	4	3
IMX20C4HV200R20020	•	20	2	20	30	19.5	4	3
IMX20C4HV200R25020	•	20	2.5	20	30	19.5	4	3
IMX20C4HV200R30020	•	20	3	20	30	19.5	4	3
IMX20C4HV200R40020	•	20	4	20	30	19.5	4	3
IMX20C4HV200R50020	•	20	5	20	30	19.5	4	3
IMX20C4HV200R60020	•	20	6	20	30	19.5	4	3
IMX20C4HV200R63520	•	20	6.35	20	30	19.5	4	3
IMX20C4HV220R05023	*	22	0.53	23	33	19.5	4	2
IMX20C4HV220R10023		22	1	23	33	19.5	4	2
IMX20C4HV220R20023		22	2	23	33	19.5	4	2
IMX20C4HV220R30023		22	3	23	33	19.5	4	2
IMX25C4HV250R10025	•	25	1	25	37.5	24.5	4	3
IMX25C4HV250R20025	•	25	2	25	37.5	24.5	4	3
IMX25C4HV250R30025	•	25	3	25	37.5	24.5	4	3
IMX25C4HV250R40025	•	25	4	25	37.5	24.5	4	3
IMX25C4HV250R50025	•	25	5	25	37.5	24.5	4	3
IMX25C4HV250R60025		25	6	25	37.5	24.5	4	3
IMX25C4HV250R60025		25 25		25 25			4	3
IMX25C4HV250R63525			6.35	26	37.5	24.5		
		25 28	6.35	29	37.5	24.5	4	2
IMX25C4HV280R10029	•		1		41.5			2
IMX25C4HV280R30029	•	28	3	29	41.5	24.5	4	2/2

) Vc

iMX-C4HV

TORUSFRÄSER, 4-SCHNEIDIG, VARIABLER SPIRALWINKEL, **AUSFÜHRUNG MIT LANGEN SCHNEIDEN**

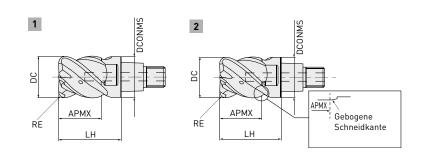


±0.020

DC<12	DC>12
0	0
-0.020	-0.030

Bestellnummer	EP7020	DC	RE	АРМХ	LH	DCONMS	ZEFP	Тур
IMX16C4HV160R10032	•	16	1	32	40	15.5	4	
IMX16C4HV160R30032	•	16	3	32	40	15.5	4	,
IMX20C4HV200R10040	•	20	1	40	50	19.5	4	4
IMX20C4HV200R30040	•	20	3	40	50	19.5	4	

iMX-C4HVS



TORUSFRÄSER, 4-SCHNEIDIG, VARIABLER SPIRALWINKEL, MIT KÜHLMITTELBOHRUNG

-0.030

-0.020

Bestellnummer	EP7020	DC	RE	АРМХ	LH	DCONMS	ZEFP	Тур
IMX10C4HV100R03010S	•	10	0.3	10	16	9.7	4	2
IMX10C4HV100R05010S	•	10	0.5	10	16	9.7	4	2
IMX10C4HV100R10010S	•	10	1	10.5	16	9.7	4	1
IMX10C4HV100R15010S	•	10	1.5	10	16	9.7	4	2
IMX10C4HV100R20010S	•	10	2	10	16	9.7	4	2
IMX10C4HV100R30010S	•	10	3	10	16	9.7	4	2
IMX12C4HV120R03012S	•	12	0.3	12	19	11.7	4	2
IMX12C4HV120R05012S	•	12	0.5	12	19	11.7	4	2
IMX12C4HV120R10012S	•	12	1	12.5	19	11.7	4	1
IMX12C4HV120R15012S	•	12	1.5	12	19	11.7	4	2
IMX12C4HV120R20012S	•	12	2	12	19	11.7	4	2
IMX12C4HV120R30012S	•	12	3	12	19	11.7	4	2
IMX12C4HV120R40012S	•	12	4	12	19	11.7	4	2
IMX16C4HV160R05016S	•	16	0.5	16	24	15.5	4	2
IMX16C4HV160R10016S	•	16	1	16.5	24	15.5	4	1
IMX16C4HV160R15016S	•	16	1.5	16	24	15.5	4	2
IMX16C4HV160R20016S	•	16	2	16	24	15.5	4	2
IMX16C4HV160R30016S	•	16	3	16	24	15.5	4	2
IMX16C4HV160R40016S	•	16	4	16	24	15.5	4	2
IMX20C4HV200R05020S	•	20	0.5	20	30	19.5	4	2
IMX20C4HV200R10020S	•	20	1	20	30	19.5	4	2
IMX20C4HV200R15020S	•	20	1.5	20	30	19.5	4	2
IMX20C4HV200R20020S	•	20	2	20	30	19.5	4	2
IMX20C4HV200R30020S	•	20	3	20	30	19.5	4	2
IMX20C4HV200R40020S	•	20	4	20	30	19.5	4	2
IMX20C4HV200R60020S	•	20	6	20	30	19.5	4	2
IMX20C4HV200R63520S	•	20	6.35	20	30	19.5	4	2

imx-c4HVS - Torusfräser, 4-schneidig, variabler spiralwinkel, mit kühlmittelbohrung

Bestellnummer	EP7020	DC	RE	АРМХ	LH	DCONMS	ZEFP	Тур
IMX25C4HV250R10025S	•	25	1	25	37.5	24.5	4	2
IMX25C4HV250R15025S	•	25	1.5	25	37.5	24.5	4	2
IMX25C4HV250R20025S	•	25	2	25	37.5	24.5	4	2
IMX25C4HV250R30025S	•	25	3	25	37.5	24.5	4	2
IMX25C4HV250R40025S	•	25	4	25	37.5	24.5	4	2
IMX25C4HV250R60025S	•	25	6	25	37.5	24.5	4	2
IMX25C4HV250R63525S	•	25	6.35	25	37.5	24.5	4	2

iMX-C4HV/C4HV-S

SCHNITTDATENEMPFEHLUNGEN

SCHULTERFRÄSEN

	Material	DC	Vc	n	fz	Vf	ар	ae
	C-Stahl,	10	150	4800	0.09	1700	10	2
Р	legierter Stahl, Baustahl	12	150	4000	0.09	1400	12	2.4
		16	150	3000	0.1	1200	16	3.2
N.	Kupfer, Kupferlegierungen	20	150	2400	0.1	960	20	4
N	Kupier, Kupiertegierungen	25	150	1900	0.12	910	25	5
		10	120	3800	0.06	910	10	2
		12	120	3200	0.065	830	12	2.4
Р	Vergüteter Stahl, legierter Werkzeugstahl	16	120	2400	0.075	720	16	3.2
	tegierier Werkzeugstunt	20	120	1900	0.075	570	20	4
		25	120	1500	0.075	450	25	5
		10	75	2400	0.06	580	10	2
	Ausscheidungsgehärteter	12	75	2000	0.065	520	12	2.4
М	rostfreier Stahl,	16	75	1500	0.075	450	16	3.2
	Kobalt-Chromlegierung	20	75	1200	0.075	360	20	4
		25	75	950	0.075	290	25	5
		10	40	1300	0.04	210	10	1
		12	40	1100	0.045	200	12	1.2
S	Hitzebeständige Legierungen	16	40	800	0.05	160	16	1.6
		20	40	640	0.05	130	20	2
		25	40	510	0.05	100	25	2.5
	Darkford on Associa	10	100	3200	0.075	960	10	2
М	Rostfreier Austenit- und Martensit-Stahl	12	100	2700	0.08	860	12	2.4
		16	100	2000	0.09	720	16	3.2
_	Titanlagianung	20	100	1600	0.09	580	20	4
S	Titanlegierung	25	100	1300	0.09	470	25	5

iMX-C4HV/C4HV-S - SCHNITTDATENEMPFEHLUNGEN

NUTENFRÄSEN

Material	DC	Vc	n	fz	Vf	ар
	10	100	3200	0.04	510	5
C-Stahl, — legierter Stahl,	12	100	2700	0.05	540	6
Baustahl	16	100	2000	0.07	560	8
_	20	100	1600	0.07	450	10
Kupfer, Kupferlegierungen —	25	100	1300	0.08	420	12
	10	80	2500	0.03	300	5
	12	80	2100	0.04	340	6
Vergüteter Stahl, legierter Werkzeugstahl —	16	80	1600	0.05	320	8
tegierter werkzeugstant —	20	80	1300	0.05	260	10
_	25	80	1000	0.05	200	12
	10	60	1900	0.025	190	5
Ausscheidungsgehärteter	12	60	1600	0.035	220	6
rostfreier Stahl,	16	60	1200	0.05	240	8
Kobalt-Chromlegierung —	20	60	950	0.05	190	10
	25	60	760	0.05	150	12
	10	30	950	0.02	76	2
	12	30	800	0.03	96	2.4
Hitzebeständige Legierungen	16	30	600	0.05	120	3.2
	20	30	480	0.05	96	4
_	25	30	380	0.05	76	5
D 16 ' A 1 '1	10	75	2400	0.03	290	5
Rostfreier Austenit- und Martensit-Stahl	12	75	2000	0.04	320	6
	16	75	1500	0.06	360	8
Titoplogionung	20	75	1200	0.06	290	10
Titanlegierung —	25	75	950	0.06	230	12

iMX-C4HV/C4HV-S

SCHULTERFRÄSEN

Material	L/D	DC	Vc	n	fz	Vf	ар	ae
Material	L/D	ВС	**	"	12	**	ар	ac
		12	150	4000	0.09	1400	12	1.2
		14	150	3400	0.09	1200	14	1.4
		18	150	2700	0.1	1100	18	1.8
	≤ 3	22	150	2200	0.1	880	22	2.2
C-Stahl,		28	150	1700	0.12	820	28	2.8
legierter Stahl,		30	150	1600	0.12	770	30	3
Baustahl		32	150	1500	0.12	720	32	3.2
		12	90	2400	0.07	670	12	0.5
		14	90	2000	0.07	560	14	0.6
		18	90	1600	0.08	510	18	0.7
	5	22	90	1300	0.08	420	22	0.9
		28	90	1000	0.1	400	28	1.1
		30	90	950	0.1	380	30	1.2
		32	90	900	0.1	360	32	1.3
		12	60	1600	0.06	380	12	0.2
		14	60	1400	0.06	340	14	0.3
Kupfer, Kupferlegierungen		18	60	1100	0.07	310	18	0.4
	7	22	60	870	0.07	240	22	0.4
		28	60	680	0.08	220	28	0.6
		30	60	640	0.08	200	30	0.6
		32	60	600	0.08	190	32	0.6
	≼3	12	120	3200	0.06	770	12	1.2
		14	120	2700	0.065	700	14	1.4
		18	120	2100	0.075	630	18	1.8
		22	120	1700	0.075	510	22	2.2
		28	120	1400	0.075	420	28	2.8
		30	120	1300	0.075	390	30	3
		32	120	1200	0.075	360	32	3.2
		12	70	1900	0.05	380	12	0.5
		14	70	1600	0.05	320	14	0.6
		18	70	1200	0.06	290	18	0.7
Vergüteter Stahl,	5	22	70	1000	0.06	240	22	0.9
legierter Werkzeugstahl		28	70	800	0.06	190	28	1.1
		30	70	740	0.06	180	30	1.2
		32	70	700	0.06	170	32	1.3
		12	50	1300	0.04	210	12	0.2
		14	50	1100	0.05	220	14	0.3
		18	50	880	0.05	180	18	0.4
	7	22	50	720	0.05	140	22	0.4
		28	50	570	0.05	110	28	0.6
		30	50	530	0.05	110	30	0.6
		32	50	500	0.05	100	32	0.6

iMX-C4HV/C4HV-S - SCHULTERFRÄSEN

	Material	L/D	DC	Vc	n	fz	Vf	ар	ae
			12	75	2000	0.06	480	12	1.2
			14	75	1700	0.065	440	14	1.4
			18	75	1300	0.075	390	18	1.8
		≤ 3	22	75	1100	0.075	330	22	2.2
			28	75	850	0.075	260	28	2.8
			30	75	800	0.075	240	30	3
	_		32	75	750	0.075	230	32	3.2
			12	50	1300	0.05	260	12	0.5
			14	50	1100	0.05	220	14	0.6
	Ausscheidungsgehärteter		18	50	880	0.06	210	18	0.7
М	rostfreier Stahl,	5	22	50	720	0.06	170	22	0.9
	Kobalt-Chromlegierung		28	50	570	0.06	140	28	1.1
			30	50	530	0.06	130	30	1.2
			32	50	500	0.06	120	32	1.3
	_		12	24	640	0.04	100	12	0.2
			14	24	550	0.05	110	14	0.3
			18	24	420	0.05	84	18	0.4
		7	22	24	350	0.05	70	22	0.4
			28	24	270	0.05	54	28	0.6
			30	24	250	0.05	50	30	0.6
			32	24	240	0.05	48	32	0.6
			12	30	800	0.04	130	12	0.9
		≼3	14	30	680	0.045	120	14	1.1
			18	40	710	0.05	140	18	1.4
			22	40	580	0.05	120	22	1.7
			28	40	450	0.05	90	28	2.1
			30	40	420	0.05	84	30	2.3
			32	40	400	0.05	80	32	2.4
			12	10	270	0.03	32	12	0.4
			14	10	230	0.04	37	14	0.4
			18	19	340	0.04	54	18	0.6
S	Hitzebeständige Legierungen	5	22	19	270	0.04	43	22	0.7
			28	19	220	0.04	35	28	0.8
			30	19	200	0.04	32	30	0.9
			32	19	190	0.04	30	32	1.0
		<u> </u>	12	_	_	_	_	_	_
			14	_	_	_	_	_	
			18	_	_	_	_	_	_
		7	22	_	_	_	_	_	_
			28	_	_	_	_	_	_
			30	_	_	_	_	_	_
			32	_	_	_	<u> </u>	_	_

iMX-C4HV/C4HV-S - SCHULTERFRÄSEN

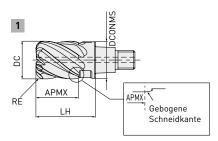
	Material	L/D	DC	Vc	n	fz	Vf	ар	ae
			12	100	2700	0.075	810	12	1.2
			14	100	2300	0.08	740	14	1.4
			18	100	1800	0.09	650	18	1.8
		≤ 3	22	100	1400	0.09	500	22	2.2
	5 . K . L . L		28	100	1100	0.09	400	28	2.8
М	Rostfreier Austenit- und Martensit-Stahl		30	100	1100	0.09	400	30	3
	and Martensit Stant		32	100	990	0.09	360	32	3.2
			12	60	1600	0.06	380	12	0.5
			14	60	1400	0.06	340	14	0.6
			18	60	1100	0.07	310	18	0.7
		5	22	60	870	0.07	240	22	0.9
			28	60	680	0.07	190	28	1.1
			30	60	640	0.07	180	30	1.2
			32	60	600	0.07	170	32	1.3
			12	32	850	0.05	170	12	0.2
S	Titanlegierung		14	32	730	0.06	180	14	0.3
3	Titalitegierung		18	32	570	0.06	140	18	0.4
		7	22	32	460	0.06	110	22	0.4
			28	32	360	0.06	86	28	0.6
			30	32	340	0.06	82	30	0.6
			32	32	320	0.06	77	32	0.6

^{1.} Bei rostfreiem Stahl, Titanlegierung und hitzebeständiger Legierung wird die Verwendung eines wasserlöslichen Kühlmittels

Bei geringen Schnitttiefen können Drehzahl und Vorschub erhöht werden.
 Fräswerkzeuge mit variablem Spiralwinkel ermöglichen eine bessere Vibrationskontrolle als Standardfräswerkzeuge. Falls die Stabilität der Maschine oder der Werkstückbefestigung jedoch sehr gering ist, können Vibrationen oder ungewöhnliche Geräusche auftreten. In diesem Fall müssen Drehzahl und Vorschub entsprechend reduziert werden, oder es muss eine geringere Schnitttiefe gewählt werden.

iMX-C6HV-C

TORUSFRÄSER, 6-SCHNEIDIG, VARIABLER SPIRALWINKEL, MIT KÜHLMITTELBOHRUNG



±0.020

DC<12	12 <dc<12< th=""><th>20<dc<25< th=""></dc<25<></th></dc<12<>	20 <dc<25< th=""></dc<25<>
0	0	0
- 0.030	- 0.040	- 0.050

Bestellnummer	EP7020	DC	RE	АРМХ	LH	DCONMS	ZEFP	T
IMX10C6HV100R05010C	•	10	0.5	10	16	9.7	6	
IMX10C6HV100R10010C	•	10	1	10	16	9.7	6	
IMX12C6HV120R05012C	•	12	0.5	12	19	11.7	6	
IMX12C6HV120R10012C	•	12	1	12	19	11.7	6	
IMX16C6HV160R10016C	•	16	1	16	24	15.5	6	
IMX16C6HV160R30016C	•	16	3	16	24	15.5	6	
IMX20C6HV200R10020C	•	20	1	20	30	19.5	6	
IMX20C6HV200R30020C	•	20	3	20	30	19.5	6	
IMX25C6HV250R10025C	•	25	1	25	37.5	24.5	6	
IMX25C6HV250R30025C	•	25	3	25	37.5	24.5	6	

iMX-C6HV-C

SCHNITTDATENEMPFEHLUNGEN

SCHULTERFRÄSEN

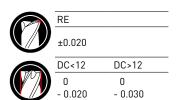
	Material	DC	Vc	n	fz	Vf	ар	ae
		10	200	6400	0.07	2700	10	1.0
	Vergüteter Stahl,	12	200	5300	0.085	2700	12	1.2
Р	C-Stahl, legierter Stahl,	16	200	4000	0.088	2100	16	1.6
	legierter Werkzeugstahl	20	200	3200	0.1	1900	20	2.0
		25	200	2500	0.1	1500	25	2.5
		10	150	4800	0.07	2000	10	1.0
		12	150	4000	0.085	2000	12	1.2
М	Rostfreier Austenit- und Martensit-Stahl	16	150	3000	0.088	1600	16	1.6
	und Martensit-Stant	20	150	2400	0.1	1400	20	2.0
		25	150	1900	0.1	1100	25	2.5
		10	40	1300	0.033	260	10	0.5
		12	40	1100	0.035	230	12	0.6
S	Hitzebeständige Legierungen	16	40	800	0.038	180	16	0.8
		20	40	640	0.04	150	20	1.0
		25	40	510	0.04	120	25	1.3
		10	100	3200	0.07	1300	10	1.0
М	Ausscheidungsgehärteter rostfreier Stahl,	12	100	2700	0.085	1400	12	1.2
	Kobalt-Chromlegierung	16	100	2000	0.088	1100	16	1.6
	Titanlegierung	20	100	1600	0.1	1000	20	2.0
S		25	100	1300	0.1	800	25	2.5

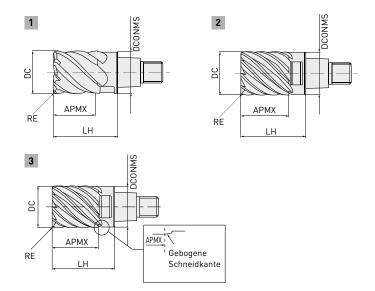
^{1.} Bei rostfreiem Stahl, Titanlegierung und hitzebeständiger Legierung wird die Verwendung eines wasserlöslichen Kühlmittels empfohlen.

^{2.} Bei geringen Schnitttiefen können Drehzahl und Vorschub erhöht werden.

^{3.} Fräswerkzeuge mit variablem Spiralwinkel ermöglichen eine bessere Vibrationskontrolle als Standardfräswerkzeuge. Falls die Stabilität der Maschine oder der Werkstückbefestigung jedoch sehr gering ist, können Vibrationen oder ungewöhnliche Geräusche auftreten. In diesem Fall müssen Drehzahl und Vorschub entsprechend reduziert werden, oder es muss eine geringere Schnitttiefe gewählt werden.

iMX-C6HV/C10HV/C12HV (43.5°)



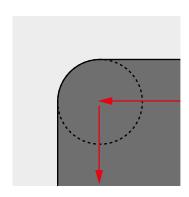


TORUSFRÄSER, MEHRSCHNEIDIG, VARIABLE SPIRALWINKEL

Bestellnummer	EP7020	DC	RE	АРМХ	LH	DCONMS	ZEFP	Тур
IMX10C6HV100R05010	•	10	0.5	10.5	16	9.7	6	1
IMX10C6HV100R10010	•	10	1	10.5	16	9.7	6	1
IMX12C6HV120R10012	•	12	1	12.5	19	11.7	6	1
IMX16C10HV160R10016	•	16	1	16.5	24	15.5	10	2
IMX20C12HV200R10020	•	20	1	20	30	19.5	12	3
IMX25C12HV250R10025	•	25	1	25	37.5	24.5	12	3

38 (Vc)

iMX-C6HV/C10HV/C12HV


SCHNITTDATENEMPFEHLUNGEN

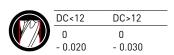
SCHULTERFRÄSEN

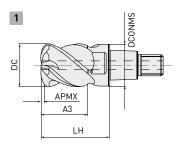
	Material	DC	ZEFP	Vc	n	fz	Vf	ар	ae
		10	6	200	6400	0.07	2700	10	1
	Vergüteter Stahl,	12	6	200	5300	0.085	2700	12	1.2
Р	C-Stahl, legierter Stahl,	16	10	200	4000	0.07	2800	16	0.6
	legierter Werkzeugstahl	20	12	200	3200	0.08	3100	20	0.8
		25	12	200	2500	0.08	2400	25	1
		10	6	150	4800	0.07	2000	10	1
		12	6	150	4000	0.085	2000	12	1.2
M	Rostfreier Austenit-	16	10	150	3000	0.088	2600	16	0.64
	unu Martensit-Stant	20	12	150	2400	0.1	2900	20	0.8
	-	25	12	150	1900	0.1	2300	25	1
		10	6	40	1300	0.033	260	10	0.5
	-	12	6	40	1100	0.035	230	12	0.6
S	Hitzebeständige Legierungen	16	10	40	800	0.038	300	16	0.6
	-	20	12	40	640	0.04	310	20	0.8
	Ī	25	12	40	510	0.04	240	25	1
		10	6	100	3200	0.07	1300	10	1
	Ausscheidungsgehärteter - rostfreier Stahl,	12	6	100	2700	0.085	1400	12	1.2
	Kobalt-Chromlegierung	16	10	100	2000	0.07	1400	16	0.6
		20	12	100	1600	0.08	1500	20	0.8
S	Titanlegierung -	25	12	100	1300	0.08	1200	25	1

- 1. Bei rostfreiem Stahl, Titanlegierung und hitzebeständiger Legierung wird die Verwendung eines wasserlöslichen Kühlmittels empfohlen.
- 2. Bei geringen Schnitttiefen können Drehzahl und Vorschub erhöht werden.
- 3. Fräswerkzeuge mit variablem Spiralwinkel ermöglichen eine bessere Vibrationskontrolle als Standardfräswerkzeuge. Falls die Stabilität der Maschine oder der Werkstückbefestigung jedoch sehr gering ist, können Vibrationen oder ungewöhnliche Geräusche auftreten. In diesem Fall müssen Drehzahl und Vorschub entsprechend reduziert werden, oder es muss eine geringere Schnitttiefe gewählt werden.
- Wenn Werkzeugradius und Eckenradius identisch sind und der Kopf mit mehr als 10 Schneiden verwendet wird, sind die oben genannten Werte für Schnitttiefe und der Vorschub zu halbieren.

iMX-C4FD-C

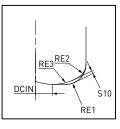
DUPLEX-TORUSFRÄSER MIT KÜHLMITTELBOHRUNG, 4-SCHNEIDIG, FÜR HOHE VORSCHÜBE





Bestellnummer	EP7020	DC	RE1*	APMX	А3	LH	DCONMS	RPMX	ZEFP	Тур
IMX10C4FD10010C	•	10	1.99	0.7	10.5	16	9.7	2.1	4	
IMX12C4FD12012C	•	12	2.1	0.8	12.5	19	11.7	2.8	4	
IMX16C4FD16016C	•	16	2.75	1	16.5	24	15.5	3	4	1
IMX20C4FD20021C	•	20	3.07	1.3	21	30	19.5	3.3	4	
IMX25C4FD25026C	•	25	4.21	1.6	26	37.5	24.5	4.5	4	

1/1


1. Die Befestigungsgrößen von Halter und Kopf sollten gleich sein (siehe Seite 6).

2. Der Duplex-Torusfräser ist für die Eckenradiusbearbeitung nicht geeignet, da möglicherweise Bereiche unbearbeitet bleiben.

PROGRAMMIERHINWEIS

Postollnummor	Duplex-Eckenradius							
Bestellnummer	S10*	DCIN	RE2	RE3				
IMX10C4FD10010C	0.27	3.4	1.5	5				
IMX12C4FD12012C	0.33	4.5	1.5	6				
IMX16C4FD16016C	0.42	6.2	2	8				
IMX20C4FD20021C	0.59	8	2	10				
IMX25C4FD25026C	0.67	10	3	12				

* S10 = Unzerspanter Bereich

^{*} RE1: theoretischer Radius

iMX-C4FD-C

SCHNITTDATENEMPFEHLUNGEN

SCHULTERFRÄSEN

	Material	DC	Vc	n	fz	Vf	ар	ae
	C Chall	10	150	4800	0.4	7700	0.5	6
Р	C-Stahl, — legierter Stahl,	12	150	4000	0.45	7200	0.6	7.2
	Baustahl	16	150	3000	0.5	6000	0.8	9.6
N.I.	- Kuntan Kuntanlagianungan	20	150	2400	0.5	4800	1	12
IN	Kupfer, Kupferlegierungen —	25	150	1900	0.5	3800	1.25	15
		10	135	4300	0.4	6900	0.5	6
		12	135	3600	0.45	6500	0.6	7.2
Р	Vergüteter Stahl, legierter Werkzeugstahl —	16	135	2700	0.5	5400	0.8	9.6
	tegierter werkzeugstant —	20	135	2100	0.5	4200	1	12
		25	135	1700	0.5	3400	1.25	15
		10	40	1300	0.2	1000	0.5	6
	Austenitischer rostfreier Stahl,	12	40	1100	0.2	880	0.6	7.2
М		16	40	800	0.3	960	0.8	9.6
	Kobalt-Chromlegierung	20	40	640	0.3	770	1	12
		25	40	510	0.3	610	1.25	15
		10	25	800	0.1	320	0.5	6
		12	25	660	0.1	260	0.6	7.2
	Hitzebeständige Legierungen	16	25	500	0.15	300	0.8	9.6
		20	25	400	0.15	240	1	12
_	_	25	25	320	0.15	190	1.25	15
5		10	40	1300	0.2	1000	0.5	6
	_	12	40	1100	0.2	880	0.6	7.2
	Titanlegierung	16	40	800	0.3	960	0.8	9.6
	_	20	40	640	0.3	770	1	12
		25	40	510	0.3	610	1.25	15
	Assessment Life Co	10	120	3800	0.3	4600	0.5	6
М	Ausscheidungsgehärteter rostfreier Stahl, Rostfreier	12	120	3200	0.3	3800	0.6	7.2
	Austenit- und Martensit-Stahl	16	120	2400	0.4	3800	0.8	9.6
	O-1	20	120	1900	0.4	3000	1	12
Н	Gehärteter Stahl (≤ 55 HRC) —	25	120	1500	0.4	2400	1.25	15

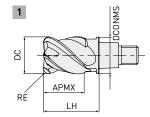
^{1.} Bei rostfreiem Stahl, Titanlegierung und hitzebeständiger Legierung wird die Verwendung eines wasserlöslichen Kühlmittels empfohlen.

^{2.} Bei geringen Schnitttiefen können Drehzahl und Vorschub erhöht werden.

Fräswerkzeuge mit variablem Spiralwinkel ermöglichen eine bessere Vibrationskontrolle als Standardfräswerkzeuge.
Falls die Stabilität der Maschine oder der Werkstückbefestigung jedoch sehr gering ist, können Vibrationen oder ungewöhnliche Geräusche auftreten. In diesem Fall müssen Drehzahl und Vorschub entsprechend reduziert werden, oder es muss eine geringere Schnitttiefe gewählt werden.

^{4.} Für Rampenbearbeitung Vorschub um 50 % verringern.

iMX-C4FV



TORUSFRÄSER ZUR HOCHEFFIZIENTEN BEARBEITUNG, 4 SCHNEIDIG, VARIABLE SPIRALWINKEL

	RE<4	RE=4
)	±0.010	±0.020

	DC<12	DC>12
)	0 - 0.020	0 - 0.030
	- 0.020	- 0.030

Bestellnummer	EP6120	DC	RE	АРМХ	LH	DCONMS	ZEFP	Тур
IMX10C4FV100R20010	•	10	2	10.5	16	9.7	4	
IMX12C4FV120R20012	•	12	2	12.5	19	11.7	4	
IMX16C4FV160R30016	•	16	3	16.5	24	15.5	4	1
IMX20C4FV200R30021	•	20	3	21	30	19.5	4	
IMX25C4FV250R40026	•	25	4	26	37.5	24.5	4	

iMX-C4FV

SCHNITTDATENEMPFEHLUNGEN

FRÄSEN MIT GROSSER SCHNITTTIEFE

	Material	DC	RE	Vc	n	fz	Vf	ар	ae
		10	2	90	2900	0.25	2900	1.2	4.5
	C-Stahl,	12	2	90	2400	0.25	2400	1.8	6
	legierter Stahl,	16	3	90	1800	0.25	1800	1.8	7.5
	Grauguss	20	3	90	1400	0.25	1400	1.8	9
P		25	4	90	1100	0.25	1100	2.4	11.5
Р		10	2	75	2400	0.21	2000	1	4.5
	Vergüteter Stahl, Legierter Werkzeugstahl	12	2	75	2000	0.21	1700	1.4	6
		16	3	75	1500	0.2	1200	1.4	7.5
	Legierter Werkzeugstant	20	3	75	1200	0.2	1000	1.4	9
		25	4	75	950	0.2	750	1.8	11.5
		10	2	60	1900	0.22	1700	0.7	4.5
		12	2	60	1600	0.22	1400	0.9	6
Н	Gehärteter Stahl (45–55 HRC)	16	3	60	1200	0.22	1100	0.9	7.5
		20	3	60	950	0.22	850	0.9	9
		25	4	60	750	0.22	650	1.2	11.5

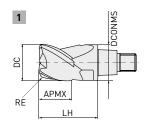
HOCHGESCHWINDIGKEITSFRÄSEN

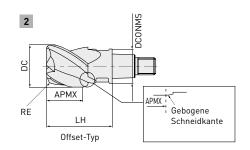
	Material	DC	RE	Vc	n	fz	Vf	ар	ae
		10	2	150	4800	0.51	9800	0.6	4.5
	C-Stahl,	12	2	150	4000	0.56	9000	0.9	6
	legierter Stahl,	16	3	150	3000	0.6	7200	0.9	7.5
	Grauguss	20	3	150	2400	0.6	5800	0.9	9
Р		25	4	150	1900	0.6	4500	1.2	11.5
Р		10	2	125	4000	0.43	6900	0.46	4.5
		12	2	125	3300	0.48	6400	0.7	6
	Vergüteter Stahl, Legierter Werkzeugstahl	16	3	125	2500	0.53	5300	0.7	7.5
	Legierter WerkZeugstunt	20	3	125	2000	0.37	3000	0.7	9
		25	4	125	1600	0.39	2500	0.9	11.5
		10	2	100	3200	0.43	5500	0.36	4.5
		12	2	100	2700	0.47	5100	0.45	6
Н	Gehärteter Stahl (45–55 HRC)	16	3	100	2000	0.54	4300	0.45	7.5
		20	3	100	1600	0.39	2500	0.45	9
		25	4	100	1300	0.39	2000	0.6	11.5

- 1. Bei geringen Schnitttiefen können Drehzahl und Vorschub erhöht werden.
- 2. Für bessere Spanabfuhr wird Druckluft oder Ölnebel empfohlen.
- 3. Zum Profilfräsen, z.B. von Formen, können die Zerspanungsbedingungen je nach Werkstückgeometrie, Bearbeitungsmethoden und Schnitttiefe beträchtlich abweichen. Speziell bei der Bearbeitung von Auslaufradien eines Werkstücks muss der Vorschub verringert werden.
- 4. Fräswerkzeuge mit variablem Spiralwinkel ermöglichen eine bessere Vibrationskontrolle als Standardfräswerkzeuge. Falls die Stabilität der Maschine oder der Werkstückbefestigung jedoch sehr gering ist, können Vibrationen oder ungewöhnliche Geräusche auftreten. In diesem Fall müssen Drehzahl und Vorschub entsprechend reduziert werden, oder es muss eine geringere Schnitttiefe gewählt werden.

iMX-C3A

TORUSFRÄSER, 3-SCHNEIDIG, FÜR ALUMINIUMLEGIERUNG





±0.020

DC<12	DC>12	
0	0	
- 0.020	- 0.030	

Bestellnummer	ET2020	DC	RE	APMX	LH	DCONMS	ZEFP	Тур
IMX10C3A100R10008	— ш	10	1	8.5	16	9.7	3	1
IMX10C3A100R25008	•	10	2.5	8.5	16	9.7	3	1
IMX12C3A120R10009	•	12	1	9.6	19	11.7	3	2
IMX12C3A120R32009	•	12	3.2	9.6	19	11.7	3	2
IMX12C3A120R10010	•	12	1	10.1	19	11.7	3	1
IMX12C3A140R10011	•	14	1	11.7	22.5	11.7	3	2
IMX16C3A160R10012	•	16	1	12.8	24	15.5	3	2
IMX16C3A160R32012	•	16	3.2	12.8	24	15.5	3	2
IMX16C3A180R32014	•	18	3.2	14.9	27	15.5	3	2
IMX20C3A200R10016	•	20	1	16	30	19.5	3	2
IMX20C3A200R32016	•	20	3.2	16	30	19.5	3	2
IMX20C3A220R32018	•	22	3.2	18.6	33	19.5	3	2
IMX25C3A250R10020	•	25	1	20	37.5	24.5	3	1
IMX25C3A250R32020	•	25	3.2	20	37.5	24.5	3	2
IMX25C3A250R50020	•	25	5	20	37.5	24.5	3	2
IMX25C3A280R32023	•	28	3.2	23.4	41.5	24.5	3	2

iMX-C3A

SCHNITTDATENEMPFEHLUNGEN

SCHULTERFRÄSEN

	Material	DC	Vc	n	fz	Vf	ар	ae
		10	500	16000	0.117	5600	8	3
		12	500	13000	0.118	4600	9.6	3.6
Ν	Aluminiumlegierung	16	500	10000	0.153	4600	12.8	4.8
		20	500	8000	0.175	4200	16	6
		25	500	6000	0.211	3800	20	7.5

NUTENFRÄSEN

Material	DC	Vc	n	fz	Vf	ар
	10	500	16000	0.068	3300	5
	12	500	13000	0.072	2800	6
N Aluminiumlegierung	16	500	10000	0.093	2800	8
	20	500	8000	0.108	2600	10
	25	500	6000	0.127	2300	12.5

1/1

iMX-C3A

EINTAUCHEN

	Material	DC	Vc	n	fz	Vf	ар	AZ
		10	300	9600	0.1	960	5	2.5
		12	300	8000	0.1	800	6	2.5
Ν	Aluminiumlegierung	16	300	6000	0.1	600	8	2.5
		20	300	4800	0.1	480	10	2.5
		25	300	3800	0.1	380	12.5	2.5

1/1

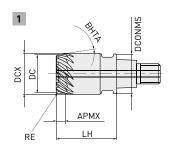
SCHULTERFRÄSEN

	Material	L/D	DC	Vc	n	fz	Vf	ар	ae
			12	500	13000	0.117	4600	9.6	2.4
			14	500	11000	0.118	3900	11.2	2.8
		≤ 3	18	500	8800	0.153	4000	14.4	3.6
			22	500	7200	0.175	3800	17.6	4.4
			28	500	5700	0.211	3600	22.4	5.6
			12	300	8000	0.09	2200	9.6	1.0
			14	300	6800	0.09	1800	11.2	1.1
Ν	Aluminiumlegierung	5	18	300	5300	0.12	1900	14.4	1.4
			22	300	4300	0.14	1800	17.6	1.8
		•	28	300	3400	0.17	1700	22.4	2.2
	_		12	200	5300	0.08	1300	9.6	0.5
		•	14	200	4500	0.08	1100	11.2	0.6
		7	18	200	3500	0.11	1200	14.4	0.7
		•	22	200	2900	0.12	1000	17.6	0.9
			28	200	2300	0.15	1000	22.4	1.1

^{1.} Die Verwendung eines wasserlöslichen Kühlschmierstoffes wird empfohlen.

^{2.} Falls die Stabilität der Maschine oder des Werkstücks gering ist, können Vibrationen auftreten. In diesem Fall müssen Drehzahl und Vorschub entsprechend reduziert werden, oder es muss eine geringere Schnitttiefe gewählt werden.

iMX-C8T/C10T/C12T/C15T @ @ 350 @


TORUSFRÄSER, KONISCHE SCHNEIDE, MEHRSCHNEIDIG, MIT KÜHLMITTELBOHRUNG

Bestellnummer	EP7020	DC	RE	APMX	DCX	LH	DCONMS	ВНТА1	ZEFP	Тур
IMX10C8T080R05T080C	•	8	0.5	7.12	10	16.0	9.7	8°	8	
IMX10C8T080R10T080C	•	8	1	7.12	10	16.0	9.7	8°	8	
IMX12C10T100R05T080C	•	10	0.5	7.12	12	19.0	11.7	8°	10	
IMX12C10T100R10T080C	•	10	1	7.12	12	19.0	11.7	8°	10	
IMX16C15T150R05T080C	•	15	0.5	3.56	16	24.0	15.5	8°	15	
IMX16C15T150R10T080C	•	15	1	3.56	16	24.0	15.5	8°	15	1
IMX16C12T150R20T080C	•	15	2	3.56	16	24.0	15.5	8°	12	
IMX20C15T190R05T080C	•	19	0.5	3.56	20	30.0	19.5	8°	15	
IMX20C15T190R10T080C	•	19	1	3.56	20	30.0	19.5	8°	15	
IMX20C12T190R20T080C	•	19	2	3.56	20	30.0	19.5	8°	12	

iMX-C8T/C10T/C12T/C15T

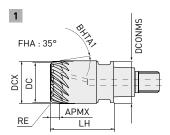
SCHNITTDATENEMPFEHLUNGEN

SCHULTERFRÄSEN

	Material	DC	ZEFP	Vc	n	fz	Vf	ар	ae
		8	8	300	12000	0.10	9600	0.3	1.2
		10	10	300	9500	0.10	9500	0.3	1.5
	Ausscheidungsgehärteter	15	12	300	6400	0.12	9200	0.3	2.2
М	rostfreier Stahl, Kobalt-Chromlegierung	15	15	300	6400	0.10	9600	0.3	2.2
	respect of the first state of the state of t	19	12	300	5000	0.12	7200	0.3	2.8
		19	15	300	5000	0.10	7500	0.3	2.8
		8	8	60	2400	0.08	1500	0.3	0.8
		10	10	60	1900	0.08	1500	0.3	1.0
S		15	12	60	1300	0.10	1600	0.3	1.5
5	Hitzebeständige Legierungen	15	15	60	1300	0.08	1600	0.3	1.5
		19	12	60	1000	0.10	1200	0.3	1.9
		19	15	60	1000	0.08	1200	0.3	1.9
		8	8	200	8000	0.10	6400	0.3	1.2
М	Rostfreier Austenit-	10	10	200	6400	0.10	6400	0.3	1.5
	und Martensit-Stahl	15	12	200	4200	0.12	6000	0.3	2.2
		15	15	200	4200	0.10	6300	0.3	2.2
S	Titanlegierung	19	12	200	3400	0.12	4900	0.3	2.8
		19	15	200	3400	0.10	5100	0.3	2.8

- 1. Die Verwendung eines wasserlöslichen Kühlschmierstoffes wird empfohlen.
- Falls die Stabilität der Maschine oder des Werkstücks gering ist, können Vibrationen auftreten.
 In diesem Fall müssen Drehzahl und Vorschub entsprechend reduziert werden, oder es muss eine
 geringere Schnitttiefe gewählt werden.

iMX-C8T-E/C10T-E/C12T-E/C15T-E


TORUSFRÄSER, KONISCHE SCHNEIDE, MEHRSCHNEIDIG, MIT KÜHLMITTELBOHRUNGEN

Bestellnummer	EP7020	DC	RE	APMX	DCX	LH	DCONMS	ВНТА1	ZEFP	Тур
IMX10C8T080R10T080E	•	8	1	7.12	10	13	9.7	8°	8	
IMX12C10T100R10T080E	•	10	1	7.12	12	19	11.7	8°	10	
IMX16C15T150R10T080E	•	15	1	3.56	16	21	15.5	8°	15	1
IMX20C15T190R10T080E	•	19	1	3.56	20	27	19.5	8°	15	
IMX20C12T190R20T080E	•	19	2	3.56	20	27	19.5	8°	12	
										1/1

49 (Vc)

iMX-C8T-E/C10T-E/ C12T-E/C15T-E

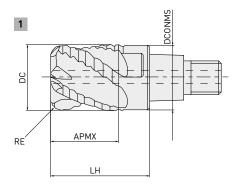
SCHNITTDATENEMPFEHLUNGEN

SCHULTERFRÄSEN

	Material	DC	ZEFP	Vc	n	fz	Vf	ар	ae
		8	8	300	12000	0.10	9600	0.3	1.2
	Austenitischer, ferritischer	10	10	300	9500	0.10	9500	0.3	1.5
М	und martensitischer rostfreier	15	15	300	6400	0.10	9600	0.3	2.2
	Stahl	19	12	300	5000	0.12	7200	0.3	2.8
		19	15	300	5000	0.10	7500	0.3	2.8
		8	8	60	2400	0.08	1500	0.3	0.8
		10	10	60	1900	0.08	1500	0.3	1.0
S	Hitzebeständige Legierungen	15	15	60	1300	0.08	1600	0.3	1.5
		19	12	60	1000	0.10	1200	0.3	1.9
		19	15	60	1000	0.08	1200	0.3	1.9
	A	8	8	200	8000	0.10	6400	0.3	1.2
М	Ausscheidungsgehärteter rostfreier Stahl, S Titanlegierung	10	10	200	6400	0.10	6400	0.3	1.5
		15	15	200	4200	0.10	6300	0.3	2.2
S		19	15	200	3400	0.12	4900	0.3	2.8
_		19	15	200	3400	0.10	5100	0.3	2.8

- 1. Die Verwendung eines wasserlöslichen Kühlschmierstoffes wird empfohlen.
- Falls die Stabilität der Maschine oder des Werkstücks gering ist, können Vibrationen auftreten.
 In diesem Fall müssen Drehzahl und Vorschub entsprechend reduziert werden, oder es muss eine
 geringere Schnitttiefe gewählt werden.

iMX-RC4F-C


SCHRUPPFRÄSER MIT KÜHLMITTELÖFFNUNG, 4-SCHNEIDIG

Bestellnummer	EP7020	АРМХ	DC	DCONMS	RE	LH	ZEFP	Тур
IMX10RC4F100R05010C	•	10.5	10	9.7	0.5	16	4	
IMX10RC4F100R10010C	•	10.5	10	9.7	1	16	4	
IMX12RC4F120R05012C	•	12.5	12	11.7	0.5	19	4	
IMX12RC4F120R10012C	•	12.5	12	11.7	1	19	4	
IMX12RC4F120R15012C	•	12.5	12	11.7	1.5	19	4	
IMX12RC4F120R20012C	•	12.5	12	11.7	2	19	4	
IMX16RC4F160R05016C	•	16.5	16	15.5	0.5	24	4	
IMX16RC4F160R10016C	•	16.5	16	15.5	1	24	4	1
IMX16RC4F160R15016C	•	16.5	16	15.5	1.5	24	4	
IMX16RC4F160R20016C	•	16.5	16	15.5	2	24	4	
IMX16RC4F160R30016C	•	16.5	16	15.5	3	24	4	
IMX20RC4F200R05021C	•	21	20	19.5	0.5	30	4	
IMX20RC4F200R10021C	•	21	20	19.5	1	30	4	
IMX20RC4F200R20021C	•	21	20	19.5	2	30	4	
IMX20RC4F200R30021C	•	21	20	19.5	3	30	4	

iMX-RC4F-C

SCHNITTDATENEMPFEHLUNGEN

SCHULTERFRÄSEN

	Material	DC	Vc	n	fz	ар	ae
		10	150	4800	860	8	4
Р	C-Stahl,	12	150	4000	800	9.6	4.8
P	legierter Stahl, Baustahl	16	150	3000	600	12.8	6.4
		20	150	2400	530	16	8
М	Rostfreier Austenit- und Martensit-Stahl	10	70	2000	320	8	4
IVI		12	70	1900	340	9.6	4.8
S	-	16	70	1400	280	12.8	6.4
3	Titanlegierung	20	70	1100	220	16	8
		10	60	1900	230	8	4
М	Ausscheidungsgehärteter	12	60	1600	230	9.6	4.8
IVI	rostfreier Stahl	16	60	1200	200	12.8	6.4
		20	60	950	180	16	8

1/1

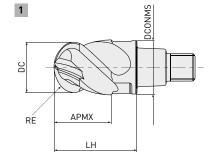
NUTENFRÄSEN

	Material	DC	Vc	n	fz	ар
		10	100	3200	510	5
Р	C-Stahl, legierter Stahl, -	12	100	2700	490	6
Ρ.	Baustahl	16	100	2000	400	8
		20	100	1600	350	10
М	Rostfreier Austenit-	10	60	1900	230	5
IVI	und Martensit-Stahl	12	60	1600	260	6
_	T'	16	60	1200	220	8
S	Titanlegierung	20	60	950	170	10
		10	40	1300	100	5
М	Ausscheidungsgehärteter	12	40	1100	110	6
ı∨ı	rostfreier Stahl	16	40	800	96	8
		20	40	640	90	10

- Falls die Stabilität der Maschine oder der Werkstückbefestigung jedoch sehr gering ist, können Vibrationen oder ungewöhnliche Geräusche auftreten. In diesem Fall müssen Drehzahl und Vorschub entsprechend reduziert werden, oder es muss eine geringere Schnitttiefe gewählt werden.
- 2. Bei geringen Schnitttiefen können Drehzahl und Vorschub erhöht werden.
- 3. Bei rostfreiem Stahl, Titanlegierung und hitzebeständiger Legierung wird die Verwendung eines wasserlöslichen Kühlmittels empfohlen.

iMX-B4HV

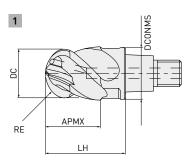
KUGELKOPFFRÄSER, 4 SCHNEIDIG, **VARIABLE SPIRALNUTEN**



Bestellnummer	EP7020	RE	DC	АРМХ	LH	DCONMS	ZEFP	Тур
IMX10B4HV10010	•	5	10	10.5	16	9.7	4	
IMX12B4HV12012	•	6	12	12.5	19	11.7	4	
IMX16B4HV16016	•	8	16	16.5	24	15.5	4	1
IMX20B4HV20021	•	10	20	21	30	19.5	4	
IMX25B4HV25026	•	12.5	25	26	37.5	24.5	4	

iMX-B4HV-E

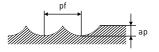
KUGELKOPFFRÄSER, 4-SCHNEIDIG, VARIABLE NUT, MIT KÜHLMITTELBOHRUNG



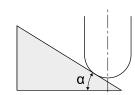
RE<6	F	RE>6
±0.01	0 ±	±0.020

DC<12	DC>12	
0	0	
- 0.020	- 0.030	

Bestellnummer	EP7020	RE	DC	АРМХ	LH	DCONMS	ZEFP	Тур
IMX10B4HV10010E	•	5	10	10.5	16	9.7	4	
IMX12B4HV12012E	•	6	12	12.5	19	11.7	4	
IMX16B4HV16016E	•	8	16	16.5	24	15.5	4	1
IMX20B4HV20021E	•	10	20	21	30	19.5	4	
IMX25B4HV25026E	•	12.5	25	26	37.5	24.5	4	



iMX-B4HV-E


SCHNITTDATENEMPFEHLUNGEN

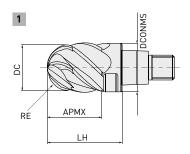
SCHULTERFRÄSEN

Material	DC	RE -		Neigung α<	jswinkel 15°		Neigungswinkel α > 15°				— ар	pf
Material	DC KL	KE	Vc	n	fz	Vf	Vc	n	fz	Vf	ар	рі
	10	5	300	9600	0.106	4100	200	6400	0.07	1800	1	2.5
C-Stahl, legierter Stahl,	12	6	300	8000	0.125	4000	200	5300	0.085	1800	1.2	3
Baustahl	16	8	300	6000	0.134	3200	200	4000	0.088	1400	1.6	4
Kupfer, Kupferlegierungen	20	10	300	4800	0.156	3000	200	3200	0.1	1300	2	5
N · · · · · · · · · · · · · · · · · · ·	25	12.5	300	3800	0.16	2400	200	2500	0.1	1000	2.5	6
	10	5	60	1900	0.055	420	40	1300	0.035	180	0.5	1
	12	6	60	1600	0.055	350	40	1100	0.035	150	0.6	1.2
Hitzebeständige Legierungen	16	8	60	1200	0.062	300	40	800	0.04	130	0.8	1.6
	20	10	60	1000	0.062	250	40	640	0.04	100	1	2
	25	12.5	60	760	0.062	190	40	510	0.04	80	1.2	2.5
Rostfreier Austenit-	10	5	225	7200	0.105	3000	150	4800	0.067	1300	1	2.5
und Martensit-Stahl,	12	6	225	6000	0.125	3000	150	4000	0.08	1300	1.2	3
rostfreier ausscheidungs-	16	8	225	4500	0.14	2500	150	3000	0.09	1100	1.6	4
, and the second	20	10	225	3600	0.16	2300	150	2400	0.105	1000	2	5
Titanlegierung -	25	12.5	225	2900	0.16	1900	150	1900	0.105	800	2.5	6

- 1. Bei rostfreiem Stahl, Titanlegierung und hitzebeständiger Legierung wird die Verwendung eines wasserlöslichen Kühlmittels empfohlen.
- 2. Bei geringen Schnitttiefen können Drehzahl und Vorschub erhöht werden.
- 3. Fräswerkzeuge mit variablem Spiralwinkel ermöglichen eine bessere Vibrationskontrolle als Standardfräswerkzeuge. Falls die Stabilität der Maschine oder der Werkstückbefestigung jedoch sehr gering ist, können Vibrationen oder ungewöhnliche Geräusche auftreten. In diesem Fall müssen Drehzahl und Vorschub entsprechend reduziert werden, oder es muss eine geringere Schnitttiefe gewählt werden.
- 4. α ist der Anstellwinkel zum Werkstück.

iMX-B6HV

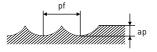
KUGELKOPFFRÄSER, 6-SCHNEIDIG, VARIABLE NUT



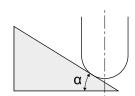
	RE<6	RE>6
)	±0.010	±0.020

DC<12	DC>12	
0	0	
-0.020	-0.030	

Bestellnummer	EP7020	RE	DC	АРМХ	LH	DCONMS	ZEFP	Тур
IMX10B6HV10010	•	5	10	10.5	16	9.7	6	
IMX12B6HV12012	•	6	12	12.5	19	11.7	6	
IMX16B6HV16016	•	8	16	16.5	24	15.5	6	1
IMX20B6HV20021	•	10	20	21	30	19.5	6	
IMX25B6HV25026	•	12.5	25	26	37.5	24.5	6	



iMX-B6HV

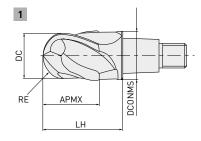

SCHNITTDATENEMPFEHLUNGEN

SCHULTERFRÄSEN

Material	DC	RE -			jswinkel 15°		Neigungswinkel α > 15°				— ар	pf
Material	DC KE	KE	Vc	n	fz	Vf	Vc	n	fz	Vf	аþ	P1
	10	5	300	9600	0.106	6100	200	6400	0.07	2700	0.5	2
C-Stahl, legierter Stahl,	12	6	300	8000	0.125	6000	200	5300	0.085	2700	0.6	2.4
Baustahl	16	8	300	6000	0.134	4800	200	4000	0.088	2100	0.8	3.2
Kupfer, Kupferlegierungen	20	10	300	4800	0.156	4500	200	3200	0.1	1900	1	4
IN .	25	12.5	300	3800	0.16	3600	200	2500	0.1	1500	1.2	5
	10	5	60	1900	0.055	630	40	1300	0.035	270	0.5	1
	12	6	60	1600	0.055	520	40	1100	0.035	220	0.6	1.2
S Hitzebeständige Legierungen	16	8	60	1200	0.062	450	40	800	0.04	190	0.8	1.6
	20	10	60	1000	0.062	370	40	640	0.04	150	1	2
	25	12.5	60	760	0.062	300	40	510	0.04	120	1.2	2.5
Rostfreier Austenit-	10	5	225	7200	0.105	4500	150	4800	0.067	1900	0.5	2
und Martensit-Stahl,	12	6	225	6000	0.125	4500	150	4000	0.08	1900	0.6	2.4
rostfreier ausscheidungs-	16	8	225	4500	0.14	3700	150	3000	0.09	1600	0.8	3.2
S	20	10	225	3600	0.16	3400	150	2400	0.105	1500	1	4
Titanlegierung	25	12.5	225	2900	0.16	2800	150	1900	0.105	1200	1.2	5

- 1. Bei rostfreiem Stahl, Titanlegierung und hitzebeständiger Legierung wird die Verwendung eines wasserlöslichen Kühlmittels empfohlen.
- 2. Bei geringen Schnitttiefen können Drehzahl und Vorschub erhöht werden.
- 3. Fräswerkzeuge mit variablem Spiralwinkel ermöglichen eine bessere Vibrationskontrolle als Standardfräswerkzeuge. Falls die Stabilität der Maschine oder der Werkstückbefestigung jedoch sehr gering ist, können Vibrationen oder ungewöhnliche Geräusche auftreten. In diesem Fall müssen Drehzahl und Vorschub entsprechend reduziert werden, oder es muss eine geringere Schnitttiefe gewählt werden.
- 4. α ist der Anstellwinkel zum Werkstück.

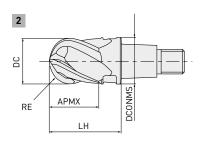
iMX-B2S/iMX-B4S



KUGELKOPF, 2-SCHNEIDIG/4-SCHNEIDIG, FÜR GEHÄRTETEN STAHL

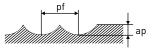
Н

iMX-B2S



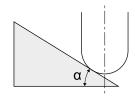
iMX-B4S

Bestellnummer	EP8110	RE	DC	АРМХ	LH	DCONMS	ZEFP	Тур
IMX16B2S16016	*	8	16	16	24	15.5	2	1
IMX20B2S20020	*	10	20	20	30	19.5	2	1
IMX16B4S16016	*	8	16	16	24	15.5	4	2
IMX20B4S20020	*	10	20	20	30	19.5	4	2
								1/1

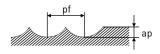


iMX-B2S/iMX-B4S

SCHNITTDATENEMPFEHLUNGEN


iMX-B2S

	Material	DC	RE		Neigung α < '				Neigung α>			ар	pf
		50		Vc	n	fz	Vf	Vc	n	fz	Vf	ар	Pi
	Gehärteter Stahl (55–65 HRC)	16	8	300	6000	0.14	1700	150	3000	0.08	480	0.3	1.6
Н	Genarieler Stant (55-65 nRC)	20	10	300	4800	0.14	1300	150	2400	0.08	380	0.3	2


/1

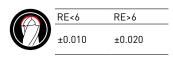
- 1. Bei geringen Schnitttiefen können Drehzahl und Vorschub erhöht werden.
- 2. α ist der Anstellwinkel zum Werkstück.

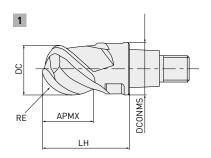
iMX-B4S

Material	DC	RE		Neigung a <				Neigung α>			ар	nf
	ьс	IV.L	Vc	n	fz	Vf	Vc	n	fz	Vf	ар	pf
H Gehärteter Stahl (55–65 HRC) -	16	8	300	6000	0.07	1700	150	3000	0.06	720	0.3	1.6
H Gehärteter Stahl (55–65 HRC)	20	10	300	4800	0.07	1300	150	2400	0.06	580	0.3	2

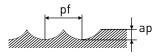
- 1. Bei geringen Schnitttiefen können Drehzahl und Vorschub erhöht werden.
- α ist der Anstellwinkel zum Werkstück.

iMX-B3FV




KUGELKOPF, FÜR HOCHEFFIZIENTE BEARBEITUNG, 3-SCHNEIDIG, VARIABLER DRALL

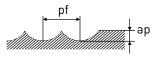
Bestellnummer	EP8120	RE	DC	АРМХ	LH	DCONMS	ZEFP	Тур
IMX10B3FV10008	*	5	10	8	16	9.7	3	
IMX12B3FV12009	*	6	12	9.6	19	11.7	3	1
IMX16B3FV16012	*	8	16	12.8	24	15.5	3	I
IMX20B3FV20016	*	10	20	16	30	19.5	3	

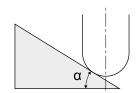


iMX-B3FV

SCHNITTDATENEMPFEHLUNGEN

SCHULTERFRÄSEN


	Material	DC	RE		Neigung α<				Neigung α>				
	Material	ьс	KE	Vc	n	fz	Vf	Vc	n	fz	Vf	ар	pf
		10	5	175	5600	0.22	3700	115	3700	0.15	1700	0.7	2.6
	Vergüteter Stahl,	12	6	175	4600	0.22	3000	115	3100	0.15	1400	1	3.2
Р	legierter Werkzeugstahl	16	8	175	3500	0.22	2300	115	2300	0.15	1000	1.1	3.8
		20	10	175	2800	0.22	1800	115	1800	0.15	810	1.2	4.8
		10	5	150	4800	0.18	2600	100	3200	0.12	1200	0.5	2
	Gehärteter Stahl (40–55 HRC)	12	6	150	4000	0.18	2200	100	2700	0.12	970	0.7	2.5
Н	Genarieler Staff (40-33 HRC)	16	8	150	3000	0.18	1600	100	2000	0.12	720	0.9	3.5
		20	10	150	2400	0.18	1300	100	1600	0.12	580	1.1	4.2


1 /1

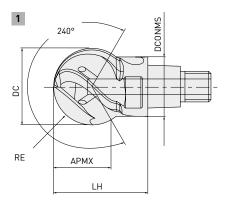
SCHULTERFRÄSEN (L/D = 7)

	Material	DC	RE		Neigung α <	•				gswinkel 15°		ар	pf
	Platerial	ьс	KL	Vc	n	fz	Vf	Vc	n	fz	Vf	ар	γı
		10	5	120	3800	0.2	2300	80	2500	0.13	980	0.5	1.3
_	Vergüteter Stahl,	12	6	120	3200	0.2	1900	80	2100	0.13	820	0.7	1.6
Р	legierter Werkzeugstahl	16	8	120	2400	0.2	1400	80	1600	0.13	620	0.8	1.9
	·	20	10	120	1900	0.2	1100	80	1300	0.13	510	0.9	2.4
		10	5	100	3200	0.13	1200	65	2100	0.085	540	0.4	1
	C-F::	12	6	100	2700	0.13	1100	65	1700	0.085	430	0.6	1.3
Н	Gehärteter Stahl (40–55 HRC)	16	8	100	2000	0.13	780	65	1300	0.085	330	0.7	1.8
		20	10	100	1600	0.13	620	65	1000	0.085	260	0.8	2.1

- 1. Bei geringen Schnitttiefen können Drehzahl und Vorschub erhöht werden.
- 2. Das Fräswerkzeug mit unregelmäßigem Spiralwinkel ermöglicht eine bessere Vibrationskontrolle als normale Fräswerkzeuge. Falls die Stabilität der Maschine oder der Werkstückbefestigung jedoch sehr gering ist, können Vibrationen oder ungewöhnliche Geräusche auftreten. In diesem Fall müssen Drehzahl und Vorschub entsprechend reduziert werden, oder eine geringere Schnitttiefe ist einzustellen.
- 3. α ist der Neigungswinkel der Bearbeitungsfläche.

iMX-B4WH-S

"LOLLIPOP" KUGELKOPF MIT KÜHLMITTELÖFFNUNG, 4-SCHNEIDIG



Bestellnummer	EP7020	АРМХ	DC	DCONMS	RE	LH	ZEFP	Тур
IMX10B4WH12008S	•	9	12	9.7	6	16.5	4	
IMX12B4WH16008S	•	12	16	11.7	8	20.9	4	1
IMX16B4WH20008S	•	15	20	15.5	10	24.7	4	

iMX-B4WH-S

SCHNITTDATENEMPFEHLUNGEN

HINTERSCHNITTBEARBEITUNG (L/D = 3)

	Material	DC	RE	Vc	n	ft	f	ae
P	C-Stahl, legierter Stahl,	12	6	100	2700	0.090	970	0.45
Р	Baustahl	16	8	100	2000	0.100	800	0.60
Ν	Vergüteter Stahl, Kupferlegierung	20	10	100	1600	0.100	640	0.75
N 4	Rostfreier Austenit-	12	6	80	2100	0.075	630	0.45
М	und Martensit-Stahl	16	8	80	1600	0.080	510	0.60
S	Kobalt-Chrom-Legierungen, Titanlegierungen	20	10	80	1300	0.090	470	0.75
		12	6	30	800	0.040	130	0.36
S	Hitzebeständige Legierungen	16	8	30	600	0.045	110	0.48
		20	10	30	480	0.050	96	0.60

1/1

HINTERSCHNITTBEARBEITUNG (L/D = 5)

	Material	DC	RE	Vc	n	ft	f	ae
	C-Stahl, legierter Stahl,	12	6	70	1900	0.070	530	0.30
P	Baustahl	16	8	70	1400	0.080	450	0.40
N	Vergüteter Stahl, Kupferlegierung	20	10	70	1100	0.080	350	0.50
N	Rostfreier Austenit-	12	6	50	1300	0.050	260	0.30
M	und Martensit-Stahl	16	8	50	990	0.060	240	0.40
S	Kobalt-Chrom-Legierungen, Titanlegierungen	20	10	50	800	0.070	220	0.50
		12	6	20	530	0.030	64	0.24
S	Hitzebeständige Legierungen	16	8	20	400	0.040	64	0.32
		20	10	20	320	0.040	51	0.40

iMX-B4WH-S

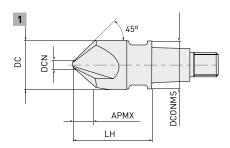
HINTERSCHNITTBEARBEITUNG (L/D = 7)

	Material	DC	RE	Vc	n	ft	f	ae
D	C-Stahl, legierter Stahl,	12	6	50	1300	0.030	160	0.15
	Baustahl	16	8	50	990	0.035	140	0.20
Ν	Vergüteter Stahl, Kupferlegierung	20	10	50	800	0.040	130	0.25
М	Rostfreier Austenit-	12	6	30	800	0.025	80	0.15
IVI	und Martensit-Stahl	16	8	30	600	0.030	72	0.20
S	Kobalt-Chrom-Legierungen, Titanlegierungen	20	10	30	480	0.035	67	0.25

- 1. Falls die Stabilität der Maschine oder der Werkstückbefestigung jedoch sehr gering ist, können Vibrationen oder ungewöhnliche Geräusche auftreten. In diesem Fall müssen Drehzahl und Vorschub entsprechend reduziert werden, oder es muss eine geringere Schnitttiefe gewählt werden.
- 2. Bei geringen Schnitttiefen können Drehzahl und Vorschub erhöht werden.
- Bei Anwendungen L/D >5, wird die Verwendung konischer Halter empfohlen.
 Bei rostfreiem Stahl, Titanlegierung und hitzebeständiger Legierung wird die Verwendung eines wasserlöslichen Kühlmittels empfohlen.

iMX-CH3L

FASENSCHNEIDKOPF, 3-SCHNEIDIG



Bestellnummer	EP7020	DC	АРМХ	DCN	LH	DCONMS	ZEFP	Тур
IMX10CH3L100A45	•	10	4.2	1.5	16.0	9.7	3	
IMX12CH3L120A45	•	12	5.2	1.5	19.0	11.7	3	1
IMX16CH3L160A45	•	16	7.2	1.5	24.0	15.5	3	I
IMX20CH3L200A45	•	20	9.2	1.5	30.0	19.5	3	

iMX-CH3L

SCHNITTDATENEMPFEHLUNGEN

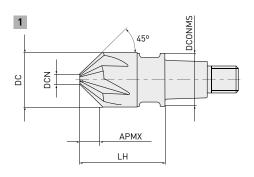
BOHRUNG FASEN

Material	DC	ZEFP	Vc	n	fz	Vf	ар	ae
	10	3	40	1300	0.04	160	1.8	1.8
C-Stahl,	12	3	40	1100	0.04	130	2.2	2.2
legierter Stahl, Grauguss	16	3	40	800	0.04	96	2.4	2.4
	20	3	40	640	0.04	77	2.6	2.6
	10	3	40	1300	0.03	120	1.8	1.8
Legierter Werkzeugstahl,	12	3	40	1100	0.03	99	2.2	2.2
vergüteter Stahl	16	3	40	800	0.03	72	2.4	2.4
	20	3	40	640	0.03	58	2.6	2.6
	10	3	30	950	0.03	86	1.8	1.8
Austenitischer rostfreier	12	3	30	800	0.03	72	2.2	2.2
Stahl, legierter Stahl	16	3	30	600	0.03	54	2.4	2.4
-	20	3	30	480	0.03	43	2.6	2.6
	10	3	30	950	0.04	110	1.8	1.8
-	12	3	30	800	0.04	96	2.2	2.2
Hitzebeständige Legierungen	16	3	30	600	0.04	72	2.4	2.4
-	20	3	30	480	0.04	58	2.6	2.6
	10	3	30	950	0.02	57	1.8	1.8
	12	3	30	800	0.02	48	2.2	2.2
H Gehärteter Stahl (45–55 HRC)	16	3	30	600	0.02	36	2.4	2.4
	20	3	30	480	0.02	29	2.6	2.6

Die Verwendung eines wasserlöslichen Kühlschmierstoffes wird empfohlen.
 Falls die Stabilität der Maschine oder des Werkstücks gering ist, können Vibrationen auftreten. In diesem Fall müssen Drehzahl und Vorschub entsprechend reduziert werden.

iMX-CH6V

FASENSCHNEIDKOPF, 6-SCHNEIDIG



Bestellnummer	EP7020	DC	АРМХ	DCN	LH	DCONMS	ZEFP	Тур
IMX12CH6V120A45	•	12	4.5	3.0	19.0	11.7	6	
IMX16CH6V160A45	•	16	6.5	3.0	24.0	15.5	6	1
IMX20CH6V200A45	•	20	8.5	3.0	30.0	19.5	6	

., .

iMX-CH6V

SCHNITTDATENEMPFEHLUNGEN

KANTEN FASEN

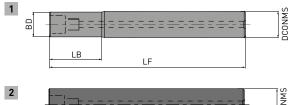
	Material	DC	ZEFP	Vc	n	fz	Vf	ар	ae
	C-Stahl,	12	6	100	2700	0.05	810	2.4	2.4
	legierter Stahl,	16	6	100	2000	0.05	600	2.7	2.7
	Grauguss	20	6	100	1600	0.05	480	3.2	3.2
Р		12	6	70	1900	0.05	510	2.4	2.4
	Legierter Werkzeugstahl, ergüteter Stahl	16	6	70	1400	0.05	380	2.7	2.7
	verguteter Stant	20	6	70	1100	0.05	300	3.2	3.2
		12	6	60	1600	0.04	380	2.4	2.4
М	Austenitischer rostfreier Stahl, legierter Stahl	16	6	60	1200	0.04	290	2.7	2.7
	Stant, tegierter Stant	20	6	60	950	0.04	230	3.2	3.2
		12	6	50	1300	0.03	230	2.4	2.4
S	Hitzebeständige Legierungen	16	6	50	990	0.03	180	2.7	2.7
		20	6	50	800	0.03	140	3.2	3.2
		12	6	30	800	0.04	190	2.4	2.4
Н	Gehärteter Stahl (45–55 HRC)	16	6	30	600	0.04	140	2.7	2.7
		20	6	30	480	0.04	120	3.2	3.2

- 1. Die Verwendung eines wasserlöslichen Kühlschmierstoffes wird empfohlen.
- 2. Falls die Stabilität der Maschine oder des Werkstücks gering ist, können Vibrationen auftreten. In diesem Fall müssen Drehzahl und Vorschub entsprechend reduziert werden.

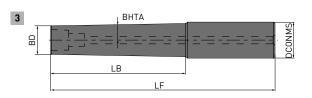
HARTMETALLSCHAFT

ABGESETZTER SCHAFT

ZYLINDERSCHAFT



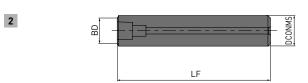
KONISCHER SCHAFT



DCONMS=10	12 <dconms<16< th=""><th>20<dconms<25< th=""></dconms<25<></th></dconms<16<>	20 <dconms<25< th=""></dconms<25<>
0	0	0
- 0.009	- 0.011	- 0.013

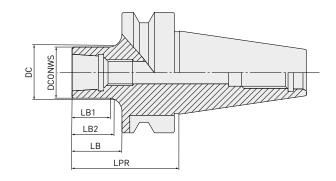
Bestellnummer	Lager	BHTA1	LB	BD	LF	DCONMS	Тур
IMX10-U10N014L070C	•		14	9.7	70	10	1
IMX10-S10L090C	•	_	_	_	90	10	2
IMX10-U10N034L090C	•	_	34	9.7	90	10	1
IMX10-S10L110C	•	_	_	_	110	10	2
IMX10-U10N054L110C	•	_	54	9.7	110	10	1
IMX10-A12N054L110C	•	1	54	9.7	110	12	3
IMX12-U12N017L080C	•	_	17	11.7	80	12	1
IMX12-S12L100C	•	_	_	_	100	12	2
IMX12-U12N041L100C	•	_	41	11.7	100	12	1
IMX12-S12L130C	•	_	_	_	130	12	2
IMX12-U12N065L130C	•	_	65	11.7	130	12	1
IMX12-A16N065L130C	•	1	65	11.7	130	16	3
IMX16-U16N024L080C	•	_	24	15.5	80	16	1
IMX16-S16L110C	•	_	_	_	110	16	2
IMX16-U16N056L110C	•	_	56	15.5	110	16	1
IMX16-S16L150C	•	_	_	_	150	16	2
IMX16-U16N088L150C	•	_	88	15.5	150	16	1
IMX16-A20N088L150C	•	1	88	15.5	150	20	3
IMX20-U20N030L090C	•	_	30	19.5	90	20	1
IMX20-S20L130C	•	_	_	_	130	20	2
IMX20-U20N070L130C	•	_	70	19.5	130	20	1
IMX20-S20L180C	•	_	_	_	180	20	2
IMX20-U20N110L180C	•	_	110	19.5	180	20	1
IMX20-A25N110L180C	•	1	110	19.5	180	25	3
IMX25-U25N037L110C	•	_	37.5	24.5	110	25	1
IMX25-S25L160C	•	_	_	_	160	25	2
IMX25-U25N087L160C	•	_	87.5	24.5	160	25	1
IMX25-S25L210C	•	_	_	_	210	25	2

STAHLSCHAFT


ABGESETZTER SCHAFT

LB LF

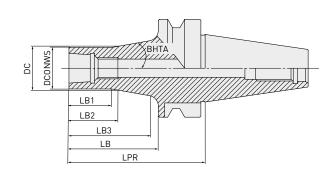
ZYLINDERSCHAFT


DCONMS=10	12 <dconms<16< th=""><th>20<dconms<25< th=""><th>DCONMS=32</th></dconms<25<></th></dconms<16<>	20 <dconms<25< th=""><th>DCONMS=32</th></dconms<25<>	DCONMS=32
0	0	0	0
- 0.009	- 0.011	- 0.013	- 0.160

Lager	LB	BD	LF	DCON	Тур
•	9	9.7	70	10	1
•	_	_	60	12	2
•	11	11.7	80	12	1
•	_	_	70	16	2
•	16	15.5	80	16	1
•	_	_	70	20	2
•	20	19.5	90	20	1
•	_	_	80	25	2
•	25	24.5	110	25	1
•	_	_	100	32	2
	Lager • • • • • • • • • • • • •	9	9 9.7 11 11.7 16 15.5 17 16 15.5 18 20 19.5 19	● 9 9.7 70 ● 60 ■ 11 11.7 80 ● 70 ■ 16 15.5 80 ● 70 ■ 20 19.5 90 ■ - 80 ■ 25 24.5 110	● 9 9.7 70 10 ● - - 60 12 ● 11 11.7 80 12 ● - - 70 16 ● 16 15.5 80 16 ● - - 70 20 ● 20 19.5 90 20 ● - - 80 25 ● 25 24.5 110 25

IMX MONOBLOCK AUFNAHME BT30

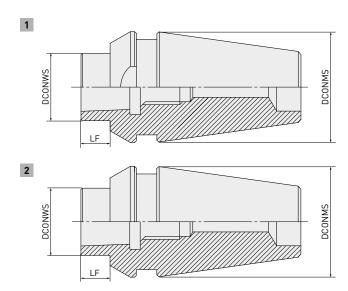
ZYLINDRISCHE AUSFÜHRUNG



Bestellnummer	Lager	DC	DCONWS	LPR	LB	LB1	LB2	WT	Geeigneter Kopf
IMX16-S16GL38-BT30	•	16	15.5	38	16	11	12.5	0.39	IMX16
IMX16-S28GL50-BT30	•	16	15.5	50	28	23	24.5	0.41	IMX16
IMX20-S19GL41-BT30	•	20	19.5	41	19	14	15.5	0.41	IMX20[]
IMX20-S33GL55-BT30	•	20	19.5	55	33	28	29.5	0.42	IMX20
IMX25-S25GL47-BT30	•	25	24.5	47	25	20	21.5	0.45	IMX25[]
IMX25-S43GL65-BT30	•	25	24.5	65	43	38	39.5	0.50	IMX25[]

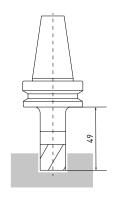
/1

KONISCHE AUSFÜHRUNG


Bestellnummer	Lager	DC	DCONWS	LPR	LB	LB1	LB2	LB3	ВНТА1	WT	Geeigneter Kopf
IMX16-A33GL55-BT30	•	16	15.5	55	33	16	16.7	29.2	15°	0.43	IMX16[]
IMX20-A42GL64-BT30	•	20	19.5	64	42	20	21.4	37.8	10°	0.48	IMX20[]
IMX25-A53GL75-BT30	•	25	24.5	75	53	25	26.7	48.7	8°	0.57	IMX25[]
											1/1

- 1. Die Befestigungsgröße von Halter und Kopf muss gleich sein.
- 2. Bitte einen Spezialschlüssel entsprechend der Befestigungsgröße verwenden. Dieser ist separat erhältlich.
- 3. Empfohlen zur Verwendung in Bearbeitungszentren, die mit Hochleistungsspindelmotoren ausgestattet sind.

ER-SPANNZANGE

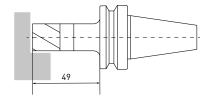

Bestellnummer	Lager	DCONWS	DCONMS	LF	Spannzangen- größe	Geeigneter Kopf	Тур
IMX10-S04-ER16	*	9.7	16	4	ER16	IMX10[]	1
IMX10-S04-ER20	*	9.7	20	4	ER20	IMX10[]	2
IMX10-S04-ER25	*	9.7	25	4	ER25	IMX10[]	2
IMX10-S04-ER32	*	9.7	32	4	ER32	IMX10[]	2
IMX12-S05-ER16	*	11.7	16	5	ER16	IMX12[]	1
IMX12-S05-ER20	*	11.7	20	5	ER20	IMX12[]	2
IMX12-S05-ER25	*	11.7	25	5	ER25	IMX12[]	2
IMX12-S05-ER32	*	11.7	32	5	ER32	IMX12[]	2
IMX16-S08-ER25	*	15.5	25	8	ER25	IMX16[]	2
IMX16-S08-ER32	*	15.5	32	8	ER32	IMX16[]	2
IMX20-S10-ER32	*	19.5	32	10	ER32	IMX20[]	2
IMX25-S12-ER32	*	24.5	32	12.5	ER32	IMX25[]	2

- 1. Die Befestigungsgröße von Halter und Kopf muss gleich sein.
- Bitte einen Spezialschlüssel entsprechend der Befestigungsgröße verwenden. Dieser ist separat erhältlich.
 Empfohlen zur Verwendung in Bearbeitungszentren, die mit Hochleistungsspindelmotoren ausgestattet sind.

VERTIKALES BEARBEITUNGSZENTRUM: BROTHER INDUSTRIES, LTD. S700XD1

Hocheffiziente Bearbeitung mit einem Zerspanvolumen von 600 cm³/min.

Material	Aluminiumlegierung
Werkzeug	IMX20S3A20016 ET2020 Schaftfräser, 3 Schneiden
Halter	IMX20-S19GL41-BT30
n (min ⁻¹)	5971
Vc (m/min)	375
Vf (mm/min)	2389
ap (mm)	13
Zerspanvolumen (cm ³ /min)	621
Schnittmodus	Externe Kühlung (Emulsion)


max. Spindeldrehzahl 10000 min⁻¹, Spindelmotor 26.2 kW, Drehmoment 92 Nm

HORIZONTALES BEARBEITUNGSZENTRUM: ENSHU, LTD. SH350

Das Zerspanvolumen war sechsmal größer als unter den empfohlenen Standardbedingungen.

Material	1.1206
Werkzeug	IMX20R4F20021 EP7020 Schruppfräser, 4 Schneiden
Halter	IMX20-S19GL41-BT30
n (min ⁻¹)	3997 (2400)
Vc (m/min)	251 (150)
Vf (mm/min)	1599 (480)
ap (mm)	12
ae (mm)	20
Zerspanvolumen (cm³/min)	384
Schnittmodus	Gleichlauf. Druckluft

⁽⁾ Schnittdatenempfehlung

max. Spindeldrehzahl 12000 min⁻¹, Spindelmotor 31 kW, Drehmoment 31.04 Nm

HARTMETALLSCHAFT - ERSATZTEILE

Referenzprodukt	Geeigneter Kopf		
		Schlüssel	Kupferpaste
IMX10-U10N014L070C			
IMX10-S10L090C			
IMX10-U10N034L090C	IMX10 []	IMX10-WR	
IMX10-S10L110C			
IMX10-U10N054L110C			
IMX10-A12N054L110C			_
IMX12-U12N017L080C			
IMX12-S12L100C			
IMX12-U12N041L100C		IMX12-WR	– MK1KS
IMX12-S12L130C		IMA12-WR	
IMX12-U12N065L130C			
IMX12-A16N065L130C			
IMX16-U16N024L080C		IMX16-WR	
IMX16-S16L110C			
IMX16-U16N056L110C	IMX16 []		
IMX16-S16L150C	IMX 16::		
IMX16-U16N088L150C			
IMX16-A20N088L150C			
IMX20-U20N030L090C			
IMX20-S20L130C			
IMX20-U20N070L130C	IMX20 []	IMX20-WR	
IMX20-S20L180C	IMXZU:;	IIMV70-MK	
IMX20-U20N110L180C			
IMX20-A25N110L180C			_
IMX25-U25N037L110C			-
IMX25-S25L160C		IMAYOF MID	
IMX25-U25N087L160C	IMX25 []	IMX25-WR	
IMX25-S25L210C			

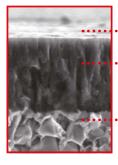
SEPARAT VERKAUFTE TEILE

Referenzprodukt	The second secon
	Schlüssel
IMX10	IMX10-WR
IMX12	IMX12-WR
IMX16	IMX16-WR
IMX20	IMX20-WR
IMX25	IMX25-WR

STAHLSCHAFT - ERSATZTEILE

Referenzprodukt	Geeigneter Kopf		
	_	Schlüssel	Kupferpaste
IMX10-U10N009L070S	IMX10 []	IMV10 M/D	
IMX10-G12L060S	IMXIU!!	IMX10-WR	
IMX12-U12N011L080S	IMX12 []]	IMV10 MD	_
IMX12-G16L070S	IMX12!!	IMX12-WR	
IMX12-G16L070S	D DV4 (57773	IMV1/ M/D	MIZIZO
IMX16-U16N016L080S	IMX16 []	IMX16-WR	MK1KS —
IMX20-U20N020L090S		IMVOO MD	
IMX20-G25L080S	IMX20 []	IMX20-WR	
IMX25-U25N025L110S		IMVOE IMP	=
IMX25-G32L100S	IMX25	IMX25-WR	

SCHAFTFRÄSER MIT AUSTAUSCHBAREM SCHNEIDKOPF


EIGENSCHAFTEN

Die iMX-Serie ist ein revolutionäres Schaftfräsersystem, welches durch die Kombination der Vorteile von Vollhartmetall- und WSP-Schaftfräsern Effizienz, hohe Präzision und Stabilität erreicht.

Sicherheit und Festigkeit entsprechen denen eines Vollhartmetall-Schaftfräsers, da alle Auflageflächen aus Vollhartmetall sind.

Dank austauschbarem Schneidkopf ausgezeichnet für reduzierte Lagerbestände bei einer Vielzahl von Anwendungsmöglichkeiten.

SEHR VIELSEITIGE SORTEN

(Al,Ti,Si)N

Ultrafeinkörniges Hartmetal

- Glatte "ZERO-µ-Oberfläche"
- Neuentwickelte (Al, Cr)N-Beschichtung
- Spezielles Hartmetallsubstrat

: ET2020 (unbeschichtet)

Geeignet für das Fräsen von Aluminium.

: EP7020

Geeignet für schwer zu bearbeitende Materialien.

EP6120

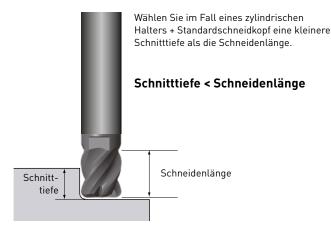
Geeignet für hohe Vorschübe beim Fräsen von Stahl.

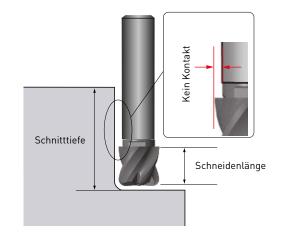
Hervorragende Gleiteigenschaften

- Hoher Oxidationswiderstand
- Größerer Verschleißwiderstand
- Ausgezeichnete Schichthaftung

EP8110 / EP8120

Die Kombination aus (neuentwickelter) (Al,Cr,Si)N-Beschichtung mit erhöhten Oxidationswiderstand und Gleiteigenschaften, als auch die (Al,Ti,Si)N-Beschichtung mit größerem Verschleißwiderstand und hoher Schichthaftung, ermöglicht die Bearbeitung von gehärtetem Stahl mit Härten von bis zu 70HRC.


AUSWAHL DES IMX-HALTERS

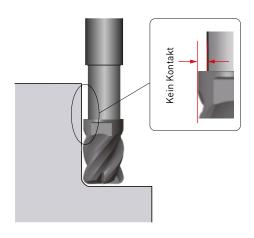

Wenn Sie einen zylindrischen Halter + Standardschneidkopf verwenden, kann es zur Kollision kommen, wenn die Schnitttiefe größer ist als die Schneidenlänge des Schneidkopfes.

Wenn Sie einen zylindrischen Halter + Schneidkopf mit Freischliff verwenden, sind größere Schnitttiefen möglich, da der Durchmesser des Schneidkopfes größer ist als der des Halters.

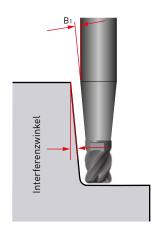
ZYLINDRISCHER HALTER + STANDARDSCHNEIDKOPF

ZYLINDRISCHER HALTER + SCHNEIDKOPF MIT FREISCHLIFF

Bitte halten Sie die Auskragung so kurz wie möglich, wenn die Schnittliefe < Schneidenlänge ist.


Schneidköpfe mit Freischliff eignen sich ideal für die Bearbeitung von tiefen Wandungen.

Konische Halter erhöhen die Stabilität bei langen Auskragungen. Berücksichtigen Sie bitte den Konturwinkel für eine Kollisionsbetrachtung.


Konische Halter und Schneidköpfe mit Freischliff sind jetzt ebenfalls erhältlich.

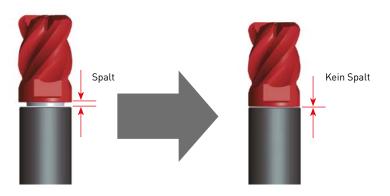
(Um den Mindestdurchmesser zu ermitteln, siehe Durchmesser D5 zum jeweiligen Typ.)

SCHNEIDKOPF + HALTER MIT FREISCHLIFF

KONISCHER SCHAFT + STANDARDSCHNEIDKOPF

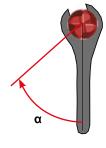
BEFESTIGUNG DES KOPFES

- Mit einem sauberen Tuch Öl und Staub vom Konus und von den Stirnflächen von Kopf und Halter wischen.
- Eine kleine Menge Kupferpaste nur auf die Gewindeflächen verteilen.



Kupferpaste nur auf Gewindeflächen

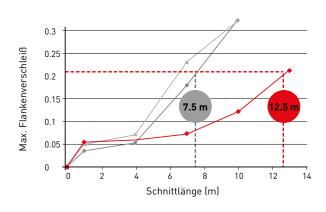
Nicht zu viel Kupferpaste verwenden, dies kann zum Verklemmen führen.



Kopf und Halter mit dem beigefügten Schlüssel sicher befestigen.

5 Befestigungswinkel und das empfohlene Drehmoment sind der Tabelle zu entnehmen.

Aufnahmegröße	Referenzanzugs- winkel α	Empfohlenes Anzugsdrehmoment (Nm)
Ø 10	50°	10
Ø 12	50°	15
Ø 16	50°	30
Ø 20	40°	50
Ø 25	35°	75

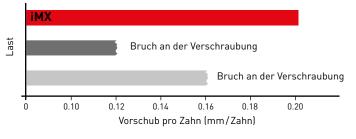


- Zur Vermeidung möglicher Verletzungen, Sicherheitshandschuhe und andere Sicherheitswerkzeuge verwenden.
- 2. Nur den mitgelieferten Schlüssel verwenden. (Standardschlüssel können zu dick sein)

VERGLEICH DER WERKZEUGSTANDZEIT BEIM PLANFRÄSEN IN INCONEL 718

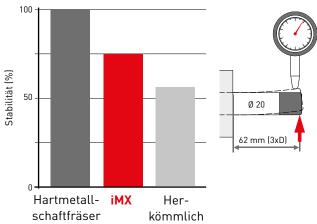
EP7020 ist eine neue Sorte, die bei der Bearbeitung von schwer zu bearbeitenden Materialen eine längere Werkzeugstandzeit ermöglicht.

Material	Inconel®718 (43HRC)	
Halter	IMX12-U12N041L100C	
Kopf	IMX12B4HV12012	
n (min ⁻¹)	1.700	
Vc (m/min)	28	
Vf (mm/min)	350	
fz (mm/Zahn)	0.05	
ap (mm)	0.6	
ae (mm)	1.2	
Auskragung (mm)	65	
Schnittmodus	Gleichlauf	
Kühlung	Nassbearbeitung mit externer Kühlung (Emulsion)	
Maschine	Vertikal MC (BT40)	



VERGLEICH DER FESTIGKEIT BEIM NUTENFRÄSEN IN TITAN

Die Zuverlässigkeit der Verschraubung wurde im Vergleich zu herkömmlichen Produkten, die nur Stahlbefestigungen verwenden, deutlich verbessert. Hohe Schnittlasten sind möglich.


STABILITÄT

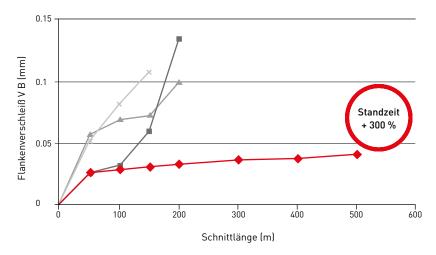
Der zweiseitige Kontakt von Hartmetallkopf und Hartmetallhalter verbessert die Gesamtstabilität um mehr als 30 %.

Material	Ti-6Al-4V (32HRC)
Halter	IMX20-U20N030L090C
Kopf	IMX20C4HV200R10021
n (min ⁻¹)	1.100
Vc (m/min)	69
Vf (mm/min)	880
fz (mm/Zahn)	0.20
ap (mm)	10
ae (mm)	20
Auskragung (mm)	72
Schnittmodus	Gleichlauf
Kühlung extern	Nassbearbeitung mit externer Kühlung (Emulsion)
Maschine	Vertikal MC (BT50)

■A ■ B : Herkömmlich

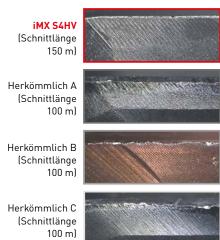
78

Mitsubishi Materials


STAHLHALTER

Kostengünstige Stahlschäfte für geringe Schnitttiefe und kurze Auskragung.

SCHNITTLEISTUNG


Dreifach längere Werkzeugstandzeit im Vergleich zu herkömmlichen Stahlschäften.

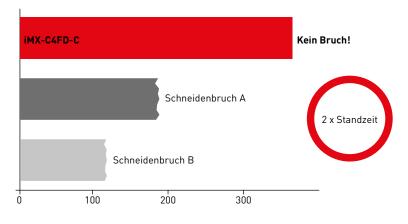
Material	1.1219
Halter	IMX10-U10N014L070S
Kopf	IMX10C4HV100R10010
n (min ⁻¹)	5.100
Vc (m/min)	160
Vf (mm/min)	1.530
fz (mm/Zahn)	0.075
ap (mm)	5
ae (mm)	0.5
Auskragung (mm)	30
Schnittmodus	Gleichlauf
Kühlung	Emulsion extern
Maschine	BT50 M/C

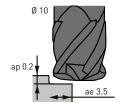
Mitsubishi Materials ■A ■B ■C: Herkömmlich

ZUSTAND DER SCHNEIDKANTE

iMX-C4FD-C

EIGENSCHAFTEN


Dünne Späne und eine lange Schneidkante vereinen sowohl hohe Leistung als auch lange Werkzeugstandzeit.


SCHNITTLEISTUNG

Schnittdatenempfehlungen können je nach Stabilität der Werkstück-/Werkzeugspannung variieren.

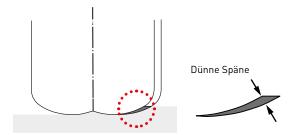
Vergleich der Werkzeugstandzeit bei Kobalt-Chrom-Legierung (Ø 10 mm)

Werkzeugstandzeit (Co-Cr-Legierung)

Material	Co-Cr-Legierung
Werkzeug	Ø 10
n (min ⁻¹)	3.185
Vc (m/min)	100
Vf (mm/min)	1.911
fz (mm/Zahn)	0.15
ap (mm)	0.2
ae (mm)	3.5
Auskragung (mm)	45
Kühlung	Löslich
Schneidmethode	Gleichlauffräsen
Maschine	Vertikal (BT40)

iMX-C4FD-C (Schnittlänge 320 m)

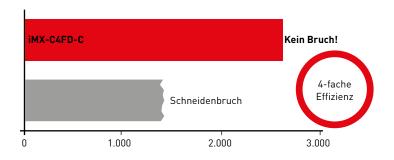
Herkömmlich A (Schnittlänge 160 m)

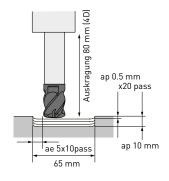

Herkömmlich B (Schnittlänge 96 m)

Mitsubishi Materials

■A ■B: Herkömmlich

iMX-C4FD-C


EIGENSCHAFTEN



Reduzierter Schnittwiderstand in radialer Richtung unterdrückt Werkzeugvibrationen und verringert Ablenkung.

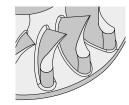
EFFIZIENZVERGLEICH FÜR SKD61 (Ø 20 MM)

Effizienzvergleich bei der Bearbeitung von SKD61

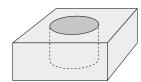
Material	1.2344
Werkzeug	Ø 20
n (min ⁻¹)	1.600
Vc (m/min)	100
Vf (mm/min)	640 – 2.560
fz (mm/Zahn)	0.10 - 0-40
ap (mm)	0.3
ae (mm)	5
Auskragung (mm)	80
Kühlung	Druckluft
Schneidmethode	Nut- & Gleichlauffräsen
Maschine	Vertikal (BT50)

Keine Brüche iMX-C4FD-C (Vf 2.560 mm/min)

Mikrobrüche Herkömmlich (Vf 1.280 mm/min)


Mitsubishi Materials

■ A : Herkömmlich


ANWENDUNGSBEISPIELE

Bei den gezeigten Beispielen handelt es sich um tatsächliche Anwendungen, die von den empfohlenen Schnittdaten abweichen.

Kopf IMX12-U12N041L100C	
Halter	IMX12B6HV12012
Werkstück	DIN Cf53
Bauteil	Impeller für Drehmomentwandler
Bearbeitungsschritt	Endbearbeitung der Schaufeln
Vc (m/min)	200
fz (mm/Zahn)	0.08
ae (mm)	~ 1.4
ap (mm)	~1.0
Länge der Auskragung (mm)	70
Schnittmethode	Trochodiales Fräsen
Maschine	5-Achsmaschine (HSK A63)
Ergebnisse	Das Werkzeug konnte die Bearbeitungszeit um 30 % reduzieren. Es wurde eine gute Oberflächengüte erzielt.

Kopf	IMX20-U20N070L130C	
Halter	IMX20C4HV200R10021	
Werkstück	DIN S235	
Bauteil	Gesenkstahl	
Bearbeitungsschritt	Endbearbeitung der Bohrungen	
Vc (m/min)	100	
fz (mm/Zahn)	0.05	
ae (mm)	1	
ap (mm)	3	
Länge der Auskragung (mm)	105	
Schnittmethode	Zirkularfräsen	
Maschine	Bearbeitungszentrum	
Ergebnisse	Schneidkanten mit variablem Spiralwinkel und massivem Hartmetallhalter zeigen bessere Leistung als herkömmliche Werkzeuge.	

ANWENDUNGSBEISPIELE

Kopf	IMX16-U16N024L080C	
Halter	IMX16C10HV160R10016	
Werkstück	Titanlegierung (Ti-6Al-4V)	
Bauteil	Prüfstück	
Bearbeitungsschritt	Schulterfräsen (Gleichlauffräsen)	
Vc (m/min)	151	
fz (mm/Zahn)	0.08	
ae (mm)	0.5	
ap (mm)	16	
Länge der Auskragung (mm)	52	
Kühlung	Nassbearbeitung mit externer Kühlung (Emulsion)	
Maschine	Bearbeitungszentrum	
Ergebnisse	Auch bei identischem Werkzeug- und Werkstückradius war eine vibrationsfreie Bearbeitung möglich.	

EUROPÄISCHE VERTRIEBSGESELLSCHAFTEN

GERMANY

MITSUBISHI MATERIALS TOOLS EUROPE GMBH

Comeniusstr. 2 . 40670 Meerbusch

Phone +49 2159 91890 . Fax +49 2159 918966

admin@mmchq.de Fmail

UK Office

MMC HARDMETAL UK LTD

1 Centurion Court, Centurion Way

Tamworth, B77 5PN Phone + 44 1827 312312

Email sales@mitsubishicarbide.co.uk

UK Deliveries / Returns

Unit 4 B5K Business Park, Quartz Close

Tamworth, B77 4GR

MITSUBISHI MATERIALS ESPAÑA, S.A.

Calle Emperador 2 . 46136 Museros/Valencia

Phone + 34 96 1441711

Email comercial@mmevalencia.es

FRANCE

MMC METAL FRANCE S.A.R.L.

6, Rue Jacques Monod . 91400 Orsay

Phone +33 1 69 35 53 53 . Fax +33 1 69 35 53 50

Email mmfsales@mmc-metal-france.fr

POLAND

MMC HARDMETAL POLAND SP. Z 0.0

Al. Armii Krajowej 61 . 50 - 541 Wroclaw

Phone + 48 71335 1620 . Fax + 48 71335 1621 Email sales@mitsubishicarbide.com.pl

ITALY

MMC ITALIA S.R.L.

Viale Certosa 144 . 20156 Milano

Phone +39 0293 77031 . Fax +39 0293 589093

Email info@mmc-italia.it

TURKEY

MITSUBISHI MATERIALS TOOLS EUROPE GMBH ALMANYA İZMİR MERKEZ SUBESİ

Adalet Mahallesi Anadolu Caddesi No: 41-1 . 15001 35530 Bayraklı/İzmir

Phone +90 232 5015000 . Fax +90 232 5015007 Email info@mmchg.com.tr

www.mmc-carbide.com

VERTRIEB DURCH:

 \Box